Do you want BuboFlash to help you learning these things? Or do you want to add or correct something? Click here to log in or create user.



#cfa #cfa-level-1 #economics #microeconomics #reading-14-demand-and-supply-analysis-consumer-demand #section-4-the-opportunity-set #study-session-4 #the-production-opportunity-set
4.2. The Production Opportunity Set

Companies face constraints on their production opportunities, just as consumers face limits on the bundles of goods that they can consume. Consider a company that produces two products using the same production capacity. For example, an automobile company might use the same factory to produce either automobiles or light trucks. If so, then the company is constrained by the limited capacity to produce vehicles. If it produces more trucks, it must reduce its production of automobiles; likewise, if it produces more automobiles, it must produce fewer trucks. The company’s production opportunity frontier shows the maximum number of units of one good it can produce, for any given number of the other good that it chooses to manufacture. Such a frontier for the vehicle company might look something like that in Exhibit 9.

Exhibit 9. The Production Opportunity Frontier

Note: The production opportunity frontier for a vehicle manufacturer shows the maximum number of autos for any given level of truck production. In this example, the opportunity cost of a truck is 0.8 autos.

There are two important things to notice about this example. First, if the company devoted its entire production facility to the manufacture of automobiles, it could produce 1 million in a year. Alternatively, if it devoted its entire plant to trucks, it could produce 1.25 million a year. Of course, it could devote only part of the year’s production to trucks, in which case it could produce automobiles during the remainder of the year. In this simple example, for every additional truck the company chooses to make, it would have to produce 0.8 fewer cars. That is, the opportunity cost of a truck is 0.8 cars, or the opportunity cost of a car is 1.25 trucks. The opportunity cost of trucks is the negative of the slope of the production opportunity frontier: 1/1.25. And of course, the opportunity cost of an automobile is the inverse of that ratio, or 1.25.

The other thing to notice about this exhibit is that it assumes the opportunity cost of a truck is independent of how many trucks (and cars) the company produces. The production opportunity frontier is linear with a constant slope. Perhaps a more realistic example would be to increase marginal opportunity cost. As more and more trucks are produced, fewer inputs that are particularly well suited to producing truck inputs could be transferred to assist in their manufacture, causing the cost of trucks (in terms of cars) to rise as more trucks are produced. In this event, the production opportunity frontier would become steeper as the company moved its production point away from cars and toward more trucks, resulting in a frontier that would be concave as viewed from the origin.

If you want to change selection, open document below and click on "Move attachment"

4. THE OPPORTUNITY SET: CONSUMPTION, PRODUCTION, AND INVESTMENT CHOICE
on the vertical axis, the slope is equal to –(P L /P C ) = –10/16 = –0.625. (Note: If we had chosen to measure quantity of lamb on the vertical axis, the slope would be inverted: –(P C /P L ) = −1.6.) <span>4.2. The Production Opportunity Set Companies face constraints on their production opportunities, just as consumers face limits on the bundles of goods that they can consume. Consider a company that produces two products using the same production capacity. For example, an automobile company might use the same factory to produce either automobiles or light trucks. If so, then the company is constrained by the limited capacity to produce vehicles. If it produces more trucks, it must reduce its production of automobiles; likewise, if it produces more automobiles, it must produce fewer trucks. The company’s production opportunity frontier shows the maximum number of units of one good it can produce, for any given number of the other good that it chooses to manufacture. Such a frontier for the vehicle company might look something like that in Exhibit 9. Exhibit 9. The Production Opportunity Frontier Note: The production opportunity frontier for a vehicle manufacturer shows the maximum number of autos for any given level of truck production. In this example, the opportunity cost of a truck is 0.8 autos. There are two important things to notice about this example. First, if the company devoted its entire production facility to the manufacture of automobiles, it could produce 1 million in a year. Alternatively, if it devoted its entire plant to trucks, it could produce 1.25 million a year. Of course, it could devote only part of the year’s production to trucks, in which case it could produce automobiles during the remainder of the year. In this simple example, for every additional truck the company chooses to make, it would have to produce 0.8 fewer cars. That is, the opportunity cost of a truck is 0.8 cars, or the opportunity cost of a car is 1.25 trucks. The opportunity cost of trucks is the negative of the slope of the production opportunity frontier: 1/1.25. And of course, the opportunity cost of an automobile is the inverse of that ratio, or 1.25. The other thing to notice about this exhibit is that it assumes the opportunity cost of a truck is independent of how many trucks (and cars) the company produces. The production opportunity frontier is linear with a constant slope. Perhaps a more realistic example would be to increase marginal opportunity cost. As more and more trucks are produced, fewer inputs that are particularly well suited to producing truck inputs could be transferred to assist in their manufacture, causing the cost of trucks (in terms of cars) to rise as more trucks are produced. In this event, the production opportunity frontier would become steeper as the company moved its production point away from cars and toward more trucks, resulting in a frontier that would be concave as viewed from the origin. 4.3. The Investment Opportunity Set The investment opportunity set is examined in detail in readings on investments, but it is appropriate to exa


Summary

statusnot read reprioritisations
last reprioritisation on suggested re-reading day
started reading on finished reading on

Details



Discussion

Do you want to join discussion? Click here to log in or create user.