Do you want BuboFlash to help you learning these things? Or do you want to add or correct something? Click here to log in or create user.

Proposition: Every element in a vector space has a unique additive inverse. Proof: Suppose V is a vector space. Let v ∈ V. Suppose that w and w' are additive inverses of v. Then w' = w' + 0 = w' +(v + w) = (w'+v)+w = 0 + w = w. Thus w = w', as desired.
If you want to change selection, open document below and click on "Move attachment"


owner: eshi - (no access) - Sheldon_Axler_Linear_Algebra_Done_Right.pdf, p25


statusnot read reprioritisations
last reprioritisation on suggested re-reading day
started reading on finished reading on



Do you want to join discussion? Click here to log in or create user.