Do you want BuboFlash to help you learning these things? Or do you want to add or correct something? Click here to log in or create user.

#bonds #duration #finance

when the yield is continuously compounded, Macaulay duration and modified duration are equal.

If you want to change selection, open document below and click on "Move attachment"

**Bond duration - Wikipedia, the free encyclopedia**

percentage derivative of price with respect to yield. Modified duration applies when a bond or other asset is considered as a function of yield. In this case one can measure the logarithmic derivative with respect to yield: It turns out that <span>when the yield is expressed continuously compounded, Macaulay duration and modified duration are equal. First, consider the case of continuously compounded yields. If we take the derivative of price or present value, expression (2), with respect to the continuously compounded yield we see

percentage derivative of price with respect to yield. Modified duration applies when a bond or other asset is considered as a function of yield. In this case one can measure the logarithmic derivative with respect to yield: It turns out that <span>when the yield is expressed continuously compounded, Macaulay duration and modified duration are equal. First, consider the case of continuously compounded yields. If we take the derivative of price or present value, expression (2), with respect to the continuously compounded yield we see

status | not read | reprioritisations | ||
---|---|---|---|---|

last reprioritisation on | suggested re-reading day | |||

started reading on | finished reading on |

Do you want to join discussion? Click here to log in or create user.