Do you want BuboFlash to help you learning these things? Or do you want to add or correct something? Click here to log in or create user.



Tags
#m249 #mathematics #open-university #statistics #time-series
Question
The 1-step ahead forecast error at time t, which is denoted et, is the difference between the observed value and the 1-step ahead forecast of Xt:
et = xt - \(\hat{x}_t\)
The sum of squared errors, or SSE, is given by
SSE = [...]
Given observed values x1 ,x2 ,...,xn ,the optimal value of the smoothing parameter α for simple exponential smoothing is the value that minimizes the sum of squared errors.
Answer
\(\large SSE = \sum_{t=1}^ne_t^2 = \sum_{t=1}^n(x_t-\hat{x}_t)^2\)

Tags
#m249 #mathematics #open-university #statistics #time-series
Question
The 1-step ahead forecast error at time t, which is denoted et, is the difference between the observed value and the 1-step ahead forecast of Xt:
et = xt - \(\hat{x}_t\)
The sum of squared errors, or SSE, is given by
SSE = [...]
Given observed values x1 ,x2 ,...,xn ,the optimal value of the smoothing parameter α for simple exponential smoothing is the value that minimizes the sum of squared errors.
Answer
?

Tags
#m249 #mathematics #open-university #statistics #time-series
Question
The 1-step ahead forecast error at time t, which is denoted et, is the difference between the observed value and the 1-step ahead forecast of Xt:
et = xt - \(\hat{x}_t\)
The sum of squared errors, or SSE, is given by
SSE = [...]
Given observed values x1 ,x2 ,...,xn ,the optimal value of the smoothing parameter α for simple exponential smoothing is the value that minimizes the sum of squared errors.
Answer
\(\large SSE = \sum_{t=1}^ne_t^2 = \sum_{t=1}^n(x_t-\hat{x}_t)^2\)
If you want to change selection, open original toplevel document below and click on "Move attachment"

Parent (intermediate) annotation

Open it
step ahead forecast error at time t, which is denoted e t , is the difference between the observed value and the 1-step ahead forecast of X t : e t = x t - \(\hat{x}_t\) The sum of squared errors, or SSE, is given by SSE <span>= \(\large \sum_{t=t}^ne_t^2 = \sum_{t=t}^n(x_t-\hat{x}_t)^2\) Given observed values x 1 ,x 2 ,...,x n ,the optimal value of the smoothing parameter α for simple exponential smoothing is the value that minimizes the sum of squared errors.<

Original toplevel document (pdf)

cannot see any pdfs

Summary

statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Details

No repetitions


Discussion

Do you want to join discussion? Click here to log in or create user.