Do you want BuboFlash to help you learning these things? Or do you want to add or correct something? Click here to log in or create user.



Tags
#m249 #mathematics #open-university #statistics #time-series
Question
The 1-step ahead forecast error at time t, which is denoted et, is the difference between the observed value and the 1-step ahead forecast of Xt:
et = xt - \(\hat{x}_t\)
The sum of squared errors, or SSE, is given by

SSE = \(\large \sum_{t=1}^ne_t^2 = \sum_{t=1}^n(x_t-\hat{x}_t)^2\)

Given observed values x1 ,x2 ,...,xn ,the optimal value of the smoothing parameter α for simple exponential smoothing is the value that [...].
Answer
minimizes the sum of squared errors

Tags
#m249 #mathematics #open-university #statistics #time-series
Question
The 1-step ahead forecast error at time t, which is denoted et, is the difference between the observed value and the 1-step ahead forecast of Xt:
et = xt - \(\hat{x}_t\)
The sum of squared errors, or SSE, is given by

SSE = \(\large \sum_{t=1}^ne_t^2 = \sum_{t=1}^n(x_t-\hat{x}_t)^2\)

Given observed values x1 ,x2 ,...,xn ,the optimal value of the smoothing parameter α for simple exponential smoothing is the value that [...].
Answer
?

Tags
#m249 #mathematics #open-university #statistics #time-series
Question
The 1-step ahead forecast error at time t, which is denoted et, is the difference between the observed value and the 1-step ahead forecast of Xt:
et = xt - \(\hat{x}_t\)
The sum of squared errors, or SSE, is given by

SSE = \(\large \sum_{t=1}^ne_t^2 = \sum_{t=1}^n(x_t-\hat{x}_t)^2\)

Given observed values x1 ,x2 ,...,xn ,the optimal value of the smoothing parameter α for simple exponential smoothing is the value that [...].
Answer
minimizes the sum of squared errors
If you want to change selection, open original toplevel document below and click on "Move attachment"

Parent (intermediate) annotation

Open it
is given by SSE = \(\large \sum_{t=t}^ne_t^2 = \sum_{t=t}^n(x_t-\hat{x}_t)^2\) Given observed values x 1 ,x 2 ,...,x n ,the optimal value of the smoothing parameter α for simple exponential smoothing is the value that <span>minimizes the sum of squared errors.<span><body><html>

Original toplevel document (pdf)

cannot see any pdfs

Summary

statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Details

No repetitions


Discussion

Do you want to join discussion? Click here to log in or create user.