Do you want BuboFlash to help you learning these things? Or do you want to add or correct something? Click here to log in or create user.



Tags
#m249 #mathematics #open-university #statistics #time-series
Question
what does the expanded m-times (i.e. non recursive) simple exponential smoothing formula looks like?
fully recursive is:

\(\hat{x}_{n+1}\)= αxn + (1 − α)\(\hat{x}_n\)
Answer
expanded m-times is
\(\large \hat{x}_{n+1} = \sum_{i=0}^m\alpha(1-\alpha)^ix_{n-i}+(1-\alpha)^{m+1}\hat{x}_{n-m}\)

Tags
#m249 #mathematics #open-university #statistics #time-series
Question
what does the expanded m-times (i.e. non recursive) simple exponential smoothing formula looks like?
fully recursive is:

\(\hat{x}_{n+1}\)= αxn + (1 − α)\(\hat{x}_n\)
Answer
?

Tags
#m249 #mathematics #open-university #statistics #time-series
Question
what does the expanded m-times (i.e. non recursive) simple exponential smoothing formula looks like?
fully recursive is:

\(\hat{x}_{n+1}\)= αxn + (1 − α)\(\hat{x}_n\)
Answer
expanded m-times is
\(\large \hat{x}_{n+1} = \sum_{i=0}^m\alpha(1-\alpha)^ix_{n-i}+(1-\alpha)^{m+1}\hat{x}_{n-m}\)
If you want to change selection, open original toplevel document below and click on "Move attachment"

Parent (intermediate) annotation

Open it
If a time series X t is described by an additive model with constant level and no seasonality, 1-step ahead forecasts may be obtained by simple exponential smoothing using the formula \(\hat{x}_{n+1}\)= αx n + (1 − α)\(\hat{x}_n\) where: x n is the observed value at time n, \(\hat{x}_n\)​and \(\hat{x}_{n+1}\)are the 1-step ahead forecasts of X n and X n+1 , and α is a smoothing parameter, 0 ≤ α ≤ 1.

Original toplevel document (pdf)

cannot see any pdfs

Summary

statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Details

No repetitions


Discussion

Do you want to join discussion? Click here to log in or create user.