Do you want BuboFlash to help you learning these things? Or do you want to add or correct something? Click here to log in or create user.



#statistical-concepts-and-market-returns

Nominal scales represent the weakest level of measurement: They categorize data but do not rank them. If we assigned integers to mutual funds that follow different investment strategies, the number 1 might refer to a small-cap value fund, the number 2 to a large-cap value fund, and so on for each possible style. This nominal scale categorizes the funds according to their style but does not rank them.

Ordinal scales reflect a stronger level of measurement. Ordinal scales sort data into categories that are ordered with respect to some characteristic. For example, the Morningstar and Standard & Poor’s star ratings for mutual funds represent an ordinal scale in which one star represents a group of funds judged to have had relatively the worst performance, with two, three, four, and five stars representing groups with increasingly better performance, as evaluated by those services.

An ordinal scale may also involve numbers to identify categories. For example, in ranking balanced mutual funds based on their five-year cumulative return, we might assign the number 1 to the top 10 percent of funds, and so on, so that the number 10 represents the bottom 10 percent of funds. The ordinal scale is stronger than the nominal scale because it reveals that a fund ranked 1 performed better than a fund ranked 2. The scale tells us nothing, however, about the difference in performance between funds ranked 1 and 2 compared with the difference in performance between funds ranked 3 and 4, or 9 and 10.

Interval scales provide not only ranking but also assurance that the differences between scale values are equal. As a result, scale values can be added and subtracted meaningfully. The Celsius and Fahrenheit scales are interval measurement scales. The difference in temperature between 10°C and 11°C is the same amount as the difference between 40°C and 41°C. We can state accurately that 12°C = 9°C + 3°C, for example. Nevertheless, the zero point of an interval scale does not reflect complete absence of what is being measured; it is not a true zero point or natural zero. Zero degrees Celsius corresponds to the freezing point of water, not the absence of temperature. As a consequence of the absence of a true zero point, we cannot meaningfully form ratios on interval scales.

As an example, 50°C, although five times as large a number as 10°C, does not represent five times as much temperature. Also, questionnaire scales are often treated as interval scales. If an investor is asked to rank his risk aversion on a scale from 1 (extremely risk-averse) to 7 (extremely risk-loving), the difference between a response of 1 and a response of 2 is sometimes assumed to represent the same difference in risk aversion as the difference between a response of 6 and a response of 7. When that assumption can be justified, the data are measured on an interval scale.

Ratio scales represent the strongest level of measurement. They have all the characteristics of interval measurement scales as well as a true zero point as the origin. With ratio scales, we can meaningfully compute ratios as well as meaningfully add and subtract amounts within the scale. As a result, we can apply the widest range of statistical tools to data measured on a ratio scale. Rates of return are measured on a ratio scale, as is money. If we have twice as much money, then we have twice the purchasing power. Note that the scale has a natural zero—zero means no money.

If you want to change selection, open original toplevel document below and click on "Move attachment"


Summary

statusnot read reprioritisations
last reprioritisation on suggested re-reading day
started reading on finished reading on

Details



Discussion

Do you want to join discussion? Click here to log in or create user.