#reading-9-probability-concepts
In wagering, it is common to speak in terms of the odds against something, as in Statement 2. For odds of “15 to 1” against E (an implied probability of E of 1/16), a $1 wager on E, if successful, returns $15 in profits plus the $1 staked in the wager.
If you want to change selection, open document below and click on "Move attachment"
Odds(E) = 1/8, the odds for E are (1/8)/(7/8) = (1/8)(8/7) = 1/7, or “1 to 7.” For each occurrence of E, we expect seven cases of non-occurrence; out of eight cases in total, therefore, we expect E to happen once, and the probability of E is 1/8. <span>In wagering, it is common to speak in terms of the odds against something, as in Statement 2. For odds of “15 to 1” against E (an implied probability of E of 1/16), a $1 wager on E, if successful, returns $15 in profits plus the $1 staked in the wager. We can calculate the bet’s anticipated profit as follows:
Win: Probability = 1/16; Profit =$15 Loss: Probability = 15/16; Profit =–$1 Anticipated profit = (1/16)($15) + (15 Summary
status | not read | | reprioritisations | |
---|
last reprioritisation on | | | suggested re-reading day | |
---|
started reading on | | | finished reading on | |
---|
Details