Do you want BuboFlash to help you learning these things? Or do you want to add or correct something? Click here to log in or create user.

It is important for analysts to have a well-developed understanding of the risk and return characteristics of fixed-income investments. Beyond the vast worldwide market for publicly and privately issued fixed-rate bonds, many financial assets and liabilities with known future cash flows may be evaluated using the same principles. The starting point for this analysis is the yield-to-maturity, or internal rate of return on future cash flows, which was introduced in the fixed-income valuation reading. The return on a fixed-rate bond is affected by many factors, the most important of which is the receipt of the interest and principal payments in the full amount and on the scheduled dates. Assuming no default, the return is also affected by changes in interest rates that affect coupon reinvestment and the price of the bond if it is sold before it matures. Measures of the price change can be derived from the mathematical relationship used to calculate the price of the bond. The first of these measures (duration) estimates the change in the price for a given change in interest rates. The second measure (convexity) improves on the duration estimate by taking into account the fact that the relationship between price and yield-to-maturity of a fixed-rate bond is not linear.

Section 2 uses numerical examples to demonstrate the sources of return on an investment in a fixed-rate bond, which includes the receipt and reinvestment of coupon interest payments and the redemption of principal if the bond is held to maturity. The other source of return is capital gains (and losses) on the sale of the bond prior to maturity. Section 2 also shows that fixed-income investors holding the same bond can have different exposures to interest rate risk if their investment horizons differ. Discussion of credit risk, although critical to investors, is postponed to Section 5 so that attention can be focused on interest rate risk.

Section 3 provides a thorough review of bond duration and convexity, and shows how the statistics are calculated and used as measures of interest rate risk. Although procedures and formulas exist to calculate duration and convexity, these statistics can be approximated using basic bond-pricing techniques and a financial calculator. Commonly used versions of the statistics are covered, including Macaulay, modified, effective, and key rate durations. The distinction is made between risk measures that are based on changes in the bond’s yield-to-maturity (i.e., *yield* duration and convexity) and on benchmark yield curve changes (i.e., *curve* duration and convexity).

Section 4 returns to the issue of the investment horizon. When an investor has a short-term horizon, duration (and convexity) are used to estimate the change in the bond price. In this case, yield volatility matters. In particular, bonds with varying times-to-maturity have different degrees of yield volatility. When an investor has a long-term horizon, the interaction between coupon reinvestment risk and market price risk matters. The relationship among interest rate risk, bond duration, and the investment horizon is explored.

Section 5 discusses how the tools of duration and convexity can be extended to credit and liquidity risks and highlights how these different factors can affect a bond’s return and risk.

A summary of key points and practice problems in the CFA Institute multiple-choice format conclude the reading.

If you want to change selection, open original toplevel document below and click on "Move attachment"

status | not read | reprioritisations | ||
---|---|---|---|---|

last reprioritisation on | suggested re-reading day | |||

started reading on | finished reading on |

Do you want to join discussion? Click here to log in or create user.