Multiprocessor systems have three main advantages: 1. Increased throughput. By increasing the number of processors, we expect to get more work done in less time. The speed-up ratio with N processors is not N, however; rather, it is less than N. When multiple processors cooperate on a task, a certain amount of overhead is incurred in keeping all the parts working correctly. This overhead, plus contention for shared resources, lowers the expected gain from additional processors. Similarly, N programmers working closely together do not produce N times the amount of work a single programmer would produce. 2. Economy of scale. Multiprocessor systems can cost less than equivalent multiple single-processor systems, because they can share peripherals, mass storage, and power supplies. If several programs operate on the same set of data, it is cheaper to store those data on one disk and to have all the processors share them than to have many computers with local disks and many copies of the data. 3. Increased reliability. If functions can be distributed properly among several processors, then the failure of one processor will not halt the system, only slow it down. If we have ten processors and one fails, then each of the remaining nine processors can pick up a share of the work of the failed processor. Thus, the entire system runs only 10 percent slower, rather than failing altogether.
If you want to change selection, open document below and click on "Move attachment"
pdfs
- owner: miller - (no access) - Abraham Silberschatz_ Peter B Galvin_ Greg Gagne -Operating system concepts-Wiley (2012).pdf, p38
- owner: hughleat - (no access) - Abraham-Silberschatz-Operating-System-Concepts---9th2012.12.pdf, p38
Summary
status | not read | | reprioritisations | |
---|
last reprioritisation on | | | suggested re-reading day | |
---|
started reading on | | | finished reading on | |
---|
Details