### Definition

In a definition card, there is usually three deletions. The first is the name of the defined object. The second is the notation of this object. The third one is the definition. If an object admits many equivalent definitions, all definitions appears on the same card. Each definition being a different cloze deletion. Indeed, if your card is «A square is ... » and you answer «A diamond with a 90° angle», you don't want to be wrong because it is written «A rectangle with two adjacent side of same length». Therefore, the card is: «{{c1::A square}} is: equivalently -{{c2::A diamond with a 90° angle}} or -{{c3::A rectangle with two adjacent side of same length}}»
If you want to change selection, open document below and click on "Move attachment"

Unknown title
are often similar. For example, in a linear algebra book, many results begin by «Let U,V be two vector space and T a morphism from u to V». It is helpful not to have to retype it in each cards. <span>Definition In a definition card, there is usually three deletions. The first is the name of the defined object. The second is the notation of this object. The third one is the definition. If an object admits many equivalent definitions, all definitions appears on the same card. Each definition being a different cloze deletion. Indeed, if your card is «A square is ... » and you answer «A diamond with a 90° angle», you don't want to be wrong because it is written «A rectangle with two adjacent side of same length». Therefore, the card is: «{{c1::A square}} is: equivalently -{{c2::A diamond with a 90° angle}} or -{{c3::A rectangle with two adjacent side of same length}}» Beware, sometime it is better if the name and the notation belong to the same deletion. For example, if X is a subset of a vector space, it is easy to guess that «Aff(X)» is «the Affine