A category is anything that satisfies this definition—and we will have plenty of examples very soon. For now I want to emphasize that, unlike in Section 1.2, the objects do not have to be sets and the arrows need not be functions. In this sense, a category is an abstract algebra of functions, or “arrows” (sometimes also called “morphisms”), with the composition operation “◦” as primitive. If you are familiar with groups, you may think of a category as a sort of generalized group.
If you want to change selection, open document below and click on "Move attachment"
pdf
owner:
LustrzanyDotyk - (no access) - (Oxford Logic Guides 52) Steve Awodey-Category Theory-Oxford University Press (2010).pdf, p22
Summary
status | not read | | reprioritisations | |
---|
last reprioritisation on | | | suggested re-reading day | |
---|
started reading on | | | finished reading on | |
---|
Details