#learning #machine #statistics
If you want to change selection, open original toplevel document below and click on "Move attachment"
Parent (intermediate) annotation
Open it Machine learning (ML) is the scientific study of algorithms and statistical models that computer systems use to perform a specific task without using explicit instructions, relying on patterns and inference instead. It is seen as a subset of artificial intelligence . Machine learning algorithms build a mathematical model based on sample data, known as "training data ", in order to make predictionsOriginal toplevel document
Machine Learningtection [show] Artificial neural networks [show] Reinforcement learning [show] Theory[show] Machine-learning venues[show] Glossary of artificial intelligence [show] Related articles[show] v t e <span>Machine learning (ML) is the scientific study of algorithms and statistical models that computer systems use to perform a specific task without using explicit instructions, relying on patterns and inference instead. It is seen as a subset of artificial intelligence . Machine learning algorithms build a mathematical model based on sample data, known as "training data ", in order to make predictions or decisions without being explicitly programmed to perform the task.[1] [2] :2 Machine learning algorithms are used in a wide variety of applications, such as email filtering and computer vision , where it is difficult or infeasible to develop a conventional algorithm for effectively performing the task. Machine learning is closely related to computational statistics , which focuses on making predictions using computers. The study of mathematical optimization delivers methods, theory and application domains to the field of machine learning. Data mining is a field of study within machine learning, and focuses on exploratory data analysis through unsupervised learning .[3] [4] In its application across business problems, machine learning is also referred to as predictive analytics . Contents 1Overview 1.1Machine learning tasks 2History and relationships to other fields 2.1Relation to data mining 2.2Relation to optimization 2.3Relation to statistics 3Theory 4ApproacSummary
status | not read | | reprioritisations | |
---|
last reprioritisation on | | | suggested re-reading day | |
---|
started reading on | | | finished reading on | |
---|
Details