Do you want BuboFlash to help you learning these things? Or do you want to add or correct something? Click here to log in or create user.



#SRS #anki #incremental #memory #reading
By the time AlphaGo was released, it was no longer correct to say we had no idea how to build computer systems to do intuitive pattern matching.
If you want to change selection, open original toplevel document below and click on "Move attachment"

Parent (intermediate) annotation

Open it
gan to speed up, driven by advances in deep neural networks. For instance, machine vision systems rapidly went from being terrible to being comparable to human beings for certain limited tasks. <span>By the time AlphaGo was released, it was no longer correct to say we had no idea how to build computer systems to do intuitive pattern matching. While we hadn't yet nailed the problem, we were making rapid progress. AlphaGo was a big part of that story, and I wanted my article to explore this notion of building computer systems

Original toplevel document

Augmenting Long-term Memory
e time, the project also helped me learn the Anki interface, and got me to experiment with different ways of posing questions. That is, it helped me build the skills necessary to use Anki well. <span>Using Anki to thoroughly read a research paper in an unfamiliar field I find Anki a great help when reading research papers, particularly in fields outside my expertise. As an example of how this can work, I'll describe my experience reading a 2016 paper** David Silver, Aja Huang, Chris J. Maddison, Arthur Guez et al, Mastering the game of Go with deep neural networks and tree search , Nature (2016). describing AlphaGo, the computer system from Google DeepMind that beat some of the world's strongest players of the game Go. After the match where AlphaGo beat Lee Sedol, one of the strongest human Go players in history, I suggested to Quanta Magazine that I write an article about the system** Michael Nielsen, Is AlphaGo Really Such a Big Deal? , Quanta (2016).. AlphaGo was a hot media topic at the time, and the most common angle in stories was human interest, viewing AlphaGo as part of a long-standing human-versus-machine narrative, with a few technical details filled in, mostly as color. I wanted to take a different angle. Through the 1990s and first decade of the 2000s, I believed human-or-better general artificial intelligence was far, far away. The reason was that over that time researchers made only slow progress building systems to do intuitive pattern matching, of the kind that underlies human sight and hearing, as well as in playing games such as Go. Despite enormous effort by AI researchers, many pattern-matching feats which humans find effortless remained impossible for machines. While we made only very slow progress on this set of problems for a long time, around 2011 progress began to speed up, driven by advances in deep neural networks. For instance, machine vision systems rapidly went from being terrible to being comparable to human beings for certain limited tasks. By the time AlphaGo was released, it was no longer correct to say we had no idea how to build computer systems to do intuitive pattern matching. While we hadn't yet nailed the problem, we were making rapid progress. AlphaGo was a big part of that story, and I wanted my article to explore this notion of building computer systems to capture human intuition. While I was excited, writing such an article was going to be difficult. It was going to require a deeper understanding of the technical details of AlphaGo than a typical journalistic article. Fortunately, I knew a fair amount about neural networks – I'd written a book about them** Michael A. Nielsen, "Neural Networks and Deep Learning" , Determination Press (2015).. But I knew nothing about the game of Go, or about many of the ideas used by AlphaGo, based on a field known as reinforcement learning. I was going to need to learn this material from scratch, and to write a good article I was going to need to really understand the underlying technical material. Here's how I went about it. I began with the AlphaGo paper itself. I began reading it quickly, almost skimming. I wasn't looking for a comprehensive understanding. Rather, I was doing two things. One, I was trying to simply identify the most important ideas in the paper. What were the names of the key techniques I'd need to learn about? Second, there was a kind of hoovering process, looking for basic facts that I could understand easily, and that would obviously benefit me. Things like basic terminology, the rules of Go, and so on. Here's a few examples of the kind of question I entered into Anki at this stage: “What's the size of a Go board?”; “Who plays first in Go?”; “How many human game positions did AlphaGo learn from?”; “Where did AlphaGo get its training data?”; “What were the names of the two main types of neural network AlphaGo used?” As you can see, these are all elementary questions. They're the kind of thing that are very easily picked up during an initial pass over the paper, with occasional digressions to search Google and Wikipedia, and so on. Furthermore, while these facts were easy to pick up in isolation, they also seemed likely to be useful in building a deeper understanding of other material in the paper. I made several rapid passes over the paper in this way, each time getting deeper and deeper. At this stage I wasn't trying to obtain anything like a complete understanding of AlphaGo. Rather, I was trying to build up my background understanding. At all times, if something wasn't easy to understand, I didn't worry about it, I just keep going. But as I made repeat passes, the range of things that were easy to understand grew and grew. I found myself adding questions about the types of features used as inputs to AlphaGo's neural networks, basic facts about the structure of the networks, and so on. After five or six such passes over the paper, I went back and attempted a thorough read. This time the purpose was to understand AlphaGo in detail. By now I understood much of the background context, and it was relatively easy to do a thorough read, certainly far easier than coming into the paper cold. Don't get me wrong: it was still challenging. But it was far easier than it would have been otherwise. After doing one thorough pass over the AlphaGo paper, I made a second thorough pass, in a similar vein. Yet more fell into place. By this time, I understood the AlphaGo system reasonably well. Many of the questions I was putting into Anki were high level, sometimes on the verge of original research directions. I certainly understood AlphaGo well enough that I was confident I could write the sections of my article dealing with it. (In practice, my article ranged over several systems, not just AlphaGo, and I had to learn about those as well, using a similar process, though I didn't go as deep.) I continued to add questions as I wrote my article, ending up adding several hundred questions in total. But by this point the hardest work had been done. Of course, instead of using Anki I could have taken conventional notes, using a similar process to build up an understanding of the paper. But using Anki gave me confidence I would retain much of the understanding over the long term. A year or so later DeepMind released papers describing followup systems, known as AlphaGo Zero and AlphaZero** For AlphaGo Zero, see: David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou et al, Mastering the game of Go without human knowledge , Nature (2017). For AlphaZero, see: David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou et al, Mastering Chess and Shogi by Self-Play with a General Reinforcement Learning Algorithm (2017).. Despite the fact that I'd thought little about AlphaGo or reinforcement learning in the intervening time, I found I could read those followup papers with ease. While I didn't attempt to understand those papers as thoroughly as the initial AlphaGo paper, I found I could get a pretty good understanding of the papers in less than an hour. I'd retained much of my earlier understanding! By contrast, had I used conventional note-taking in my original reading of the AlphaGo paper, my understanding would have more rapidly evaporated, and it would have taken longer to read the later papers. And so using Anki in this way gives confidence you will retain understanding over the long term. This confidence, in turn, makes the initial act of understanding more pleasurable, since you believe you're learning something for the long haul, not something you'll forget in a day or a week. OK, but what does one do with it? … [N]ow that I have all this power – a mechanical golem that will never forget and never let me forget whatever I chose to – what do I choose to remember? – Gwern Branwen This entire process took a few days of my time, spread over a few weeks. That's a lot of work. However, the payoff was that I got a pretty good basic grounding in modern deep reinforcement learning. This is an immensely important field, of great use in robotics, and many researchers believe it will play an important role in achieving general artificial intelligence. With a few days work I'd gone from knowing nothing about deep reinforcement learning to a durable understanding of a key paper in the field, a paper that made use of many techniques that were used across the entire field. Of course, I was still a long way from being an expert. There were many important details about AlphaGo I hadn't understood, and I would have had to do far more work to build my own system in the area. But this foundational kind of understanding is a good basis on which to build deeper expertise. It's notable that I was reading the AlphaGo paper in support of a creative project of my own, namely, writing an article for Quanta Magazine. This is important: I find Anki works much b


Summary

statusnot read reprioritisations
last reprioritisation on suggested re-reading day
started reading on finished reading on

Details



Discussion

Do you want to join discussion? Click here to log in or create user.