the hippocampus, is to light up in response to entropy, it must operate on the inputs from the entorhinal cortex (i.e. the input to the hippocampus itself). Those inputs will present the signal after a high degree of processing. Instead of pixels, it may present a concept. A high entropy signal at the sensory inputs will lose most of its noise component early in the process of neural selection, completion, and
generalization.
If you want to change selection, open document below and click on "Move attachment"
Pleasure of learning - supermemo.gurubrain cannot effectively detect the entropy of the signal hitting the retina or the eardrum. Like pixels of a monitor, retinal cells are not aware of what they display. If the detector, such as <span>the hippocampus, is to light up in response to entropy, it must operate on the inputs from the entorhinal cortex (i.e. the input to the hippocampus itself). Those inputs will present the signal after a high degree of processing. Instead of pixels, it may present a concept. A high entropy signal at the sensory inputs will lose most of its noise component early in the process of neural selection, completion, and generalization. The signal-to-noise ratio will determine how much information is lost. The bigger the noise, the bigger the loss. The smarter we are, the more selective this processing will be and the Summary
status | not read | | reprioritisations | |
---|
last reprioritisation on | | | suggested re-reading day | |
---|
started reading on | | | finished reading on | |
---|
Details