Do you want BuboFlash to help you learning these things? Or do you want to add or correct something? Click here to log in or create user.



Question

If an ODE is [...], then the "Principle of Superposition" appears: If \(y_{1}\) and \(y_{2}\) both solve an ODE, then, \(y_{3}=\alpha y_{1}+\beta y_{2}\) is also a solution.

Answer
linear and homogeneous

Question

If an ODE is [...], then the "Principle of Superposition" appears: If \(y_{1}\) and \(y_{2}\) both solve an ODE, then, \(y_{3}=\alpha y_{1}+\beta y_{2}\) is also a solution.

Answer
?

Question

If an ODE is [...], then the "Principle of Superposition" appears: If \(y_{1}\) and \(y_{2}\) both solve an ODE, then, \(y_{3}=\alpha y_{1}+\beta y_{2}\) is also a solution.

Answer
linear and homogeneous
If you want to change selection, open document below and click on "Move attachment"

Principle of Superposition for ODE's solutions
If an ODE is linear and homogeneous, then the "Principle of Superposition" appears: If \(y_{1}\) and \(y_{2}\) both solve an ODE, then, \(y_{3}=\alpha y_{1}+\beta y_{2}\) is also a solution.

Summary

statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Details

No repetitions


Discussion

Do you want to join discussion? Click here to log in or create user.