If an ODE is [...], then the "Principle of Superposition" appears: If \(y_{1}\) and \(y_{2}\) both solve an ODE, then, \(y_{3}=\alpha y_{1}+\beta y_{2}\) is also a solution.
If an ODE is [...], then the "Principle of Superposition" appears: If \(y_{1}\) and \(y_{2}\) both solve an ODE, then, \(y_{3}=\alpha y_{1}+\beta y_{2}\) is also a solution.
If an ODE is [...], then the "Principle of Superposition" appears: If \(y_{1}\) and \(y_{2}\) both solve an ODE, then, \(y_{3}=\alpha y_{1}+\beta y_{2}\) is also a solution.
status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|
repetition number in this series | 0 | memorised on | scheduled repetition | ||||
scheduled repetition interval | last repetition or drill |