Do you want BuboFlash to help you learning these things? Or do you want to add or correct something? Click here to log in or create user.

Question

Depending on the solution of the auxiliary equation, the solution of the corresponding 2nd Linear & homogeneous ODE is different: \(\displaystyle m=\frac{-b\pm\sqrt{\Delta}}{2a}, \Delta\equiv b^{2}-4ac\)

[Answer the normal solutions and their alternative form]

Answer

1. \(\Delta>0\Rightarrow\) 2 real roots: \(m_{1},m_{2}\), both \(y_{1}=e^{m_{1}x},y_{2}=e^{m_{2}x}\) works. So the general solution is \(y_{general}=Ae^{m_{1}x}+Be^{m_{2}x}\)

- Alternative form: Because of the Euler's Equation in \(\mathbb{C}\), \(y(x)=e^{px}[\tilde{A}\cosh(qx)+\tilde{B}\sinh(qx)]\), where \(p,q\) are \(\displaystyle m=\underbrace{- \frac{b}{2a}}_p\pm \underbrace{\frac{\sqrt{\Delta}}{2a}}_{q}\).

- Why we need this form? When the initial condition includes \(y(0)\), the alt form would be much easier

2. \(\Delta<0\Rightarrow\) 2 complex roots: \(m_{1},m_{2}\in\mathbb{C}\), so the general solution is \(y(x)=Ce^{m_{1}x}+De^{m_{2}x}\)

- Alternative form: Because of the Euler's Equation, \(y(x)=e^{m_{r}x}[\tilde{C}\cos(m_{i}x)+\tilde{D}\sin(m_{i}x)]\), where \(m_{1,2}=m_{r}\pm im_{i}\).

3. \(\Delta=0\Rightarrow\) one \(m\) only! so the general solution is \(y(x)=Ae^{mx}+Bxe^{mx}=(A+Bx)e^{mx}\)

- Alternative form: Because of the Euler's Equation in \(\mathbb{C}\), \(y(x)=e^{px}[\tilde{A}\cosh(qx)+\tilde{B}\sinh(qx)]\), where \(p,q\) are \(\displaystyle m=\underbrace{- \frac{b}{2a}}_p\pm \underbrace{\frac{\sqrt{\Delta}}{2a}}_{q}\).

- Why we need this form? When the initial condition includes \(y(0)\), the alt form would be much easier

2. \(\Delta<0\Rightarrow\) 2 complex roots: \(m_{1},m_{2}\in\mathbb{C}\), so the general solution is \(y(x)=Ce^{m_{1}x}+De^{m_{2}x}\)

- Alternative form: Because of the Euler's Equation, \(y(x)=e^{m_{r}x}[\tilde{C}\cos(m_{i}x)+\tilde{D}\sin(m_{i}x)]\), where \(m_{1,2}=m_{r}\pm im_{i}\).

3. \(\Delta=0\Rightarrow\) one \(m\) only! so the general solution is \(y(x)=Ae^{mx}+Bxe^{mx}=(A+Bx)e^{mx}\)

Question

Depending on the solution of the auxiliary equation, the solution of the corresponding 2nd Linear & homogeneous ODE is different: \(\displaystyle m=\frac{-b\pm\sqrt{\Delta}}{2a}, \Delta\equiv b^{2}-4ac\)

[Answer the normal solutions and their alternative form]

Answer

?

Question

Depending on the solution of the auxiliary equation, the solution of the corresponding 2nd Linear & homogeneous ODE is different: \(\displaystyle m=\frac{-b\pm\sqrt{\Delta}}{2a}, \Delta\equiv b^{2}-4ac\)

[Answer the normal solutions and their alternative form]

Answer

- Alternative form: Because of the Euler's Equation in \(\mathbb{C}\), \(y(x)=e^{px}[\tilde{A}\cosh(qx)+\tilde{B}\sinh(qx)]\), where \(p,q\) are \(\displaystyle m=\underbrace{- \frac{b}{2a}}_p\pm \underbrace{\frac{\sqrt{\Delta}}{2a}}_{q}\).

- Why we need this form? When the initial condition includes \(y(0)\), the alt form would be much easier

2. \(\Delta<0\Rightarrow\) 2 complex roots: \(m_{1},m_{2}\in\mathbb{C}\), so the general solution is \(y(x)=Ce^{m_{1}x}+De^{m_{2}x}\)

- Alternative form: Because of the Euler's Equation, \(y(x)=e^{m_{r}x}[\tilde{C}\cos(m_{i}x)+\tilde{D}\sin(m_{i}x)]\), where \(m_{1,2}=m_{r}\pm im_{i}\).

3. \(\Delta=0\Rightarrow\) one \(m\) only! so the general solution is \(y(x)=Ae^{mx}+Bxe^{mx}=(A+Bx)e^{mx}\)

If you want to change selection, open document below and click on "Move attachment"

**The relations between the solution of an ODE and the solution of the ODE's auxiliary equation**

Depending on the solution of the auxiliary equation, the solution of the ODE is different: \(m=\frac{-b\pm\Delta}{2a}, \Delta\equiv b^{2}-4ac\) 1. \(\Delta>0\Rightarrow\) 2 real roots: \(m_{1},m_{2}\), both \(y_{1}=e^{m_{1}x},y_{2}=e^{m_{2}x}\) works. So the general solution is \(y_{general}=Ae^{m_{1}x}+Be^{m_{2}x}\) - Alternative form: Because of the Euler's Equation in \(\mathbb{C}\), \(y(x)=e^{px}[\tilde{A}\cosh(qx)+\tilde{B}\sinh(qx)]\), where \(p,q\) are \(\displaystyle m=\underbrace{- \frac{b}{2a}}_p\pm \underbrace{\frac{\sqrt{\Delta}}{2a}}_{q}\). - Why we need this form? When the initial condition includes \(y(0)\), the alt form would be much easier 2. \(\Delta<0\Rightarrow\) 2 complex roots: \(m_{1},m_{2}\in\mathbb{C}\), so the general solution is \(y(x)=Ce^{m_{1}x}+De^{m_{2}x}\) - Alternative form: Because of the Euler's Equation, \(y(x)=e^{m_{r}x}[\tilde{C}\cosh(m_{i}x)+\tilde{D}\sinh(m_{i}x)]\), where \(m_{1,2}=m_{r}\pm im_{i}\). 3. \(\Delta=0\Rightarrow\) one \(m\) only! so the general solution is \(y(x)=Ae^{mx}+Bxe^{mx}=(A+Bx)e^{mx}\)

Depending on the solution of the auxiliary equation, the solution of the ODE is different: \(m=\frac{-b\pm\Delta}{2a}, \Delta\equiv b^{2}-4ac\) 1. \(\Delta>0\Rightarrow\) 2 real roots: \(m_{1},m_{2}\), both \(y_{1}=e^{m_{1}x},y_{2}=e^{m_{2}x}\) works. So the general solution is \(y_{general}=Ae^{m_{1}x}+Be^{m_{2}x}\) - Alternative form: Because of the Euler's Equation in \(\mathbb{C}\), \(y(x)=e^{px}[\tilde{A}\cosh(qx)+\tilde{B}\sinh(qx)]\), where \(p,q\) are \(\displaystyle m=\underbrace{- \frac{b}{2a}}_p\pm \underbrace{\frac{\sqrt{\Delta}}{2a}}_{q}\). - Why we need this form? When the initial condition includes \(y(0)\), the alt form would be much easier 2. \(\Delta<0\Rightarrow\) 2 complex roots: \(m_{1},m_{2}\in\mathbb{C}\), so the general solution is \(y(x)=Ce^{m_{1}x}+De^{m_{2}x}\) - Alternative form: Because of the Euler's Equation, \(y(x)=e^{m_{r}x}[\tilde{C}\cosh(m_{i}x)+\tilde{D}\sinh(m_{i}x)]\), where \(m_{1,2}=m_{r}\pm im_{i}\). 3. \(\Delta=0\Rightarrow\) one \(m\) only! so the general solution is \(y(x)=Ae^{mx}+Bxe^{mx}=(A+Bx)e^{mx}\)

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

Do you want to join discussion? Click here to log in or create user.