For a 2nd order linear inhomogeneous ODE
\(\frac{d^{2}y}{dx^{2}}+p(x)\frac{dy}{dx}+q(x)y(x)=r(x)\)
The particular integral of it is given by
\(y_{p}(x)=u_{2}(x)\int^{x}\frac{u_{1}(\zeta)r(\zeta)}{W[u_{1}(\zeta),u_{2}(\zeta)]}d\zeta-u_{1}(x)\int^{x}\frac{u_{2}(\zeta)r(\zeta)}{W[u_{1}(\zeta),u_{2}(\zeta)]}d\zeta=\int^x \frac{\left|\begin{array}{cc}u_1(\zeta) & u_2(\zeta) \\u_1(x) & u_2(x)\end{array}\right|}{W\left[u_1(\zeta), u_2(\zeta)\right]} r(\zeta) d \zeta\)
where:
- \(\displaystyle W[u_{1}(x),u_{2}(x)]=\begin{vmatrix}u_{1}(x) & u_{2}(x) \\ u_{1}'(x) & u_{2}'(x)\end{vmatrix}=u_{1}(x)u_{2}'(x)-u_{2}(x)u_{1}'(x)\).
- \(u_{1}(x), u_{2}(x)\) is the complementary functions of the inhomogeneous ODE.
- \(r(x)\) is RHS of the inhomogeneous ODE.
status | not read | reprioritisations | ||
---|---|---|---|---|
last reprioritisation on | suggested re-reading day | |||
started reading on | finished reading on |