Do you want BuboFlash to help you learning these things? Or do you want to add or correct something? Click here to log in or create user.



Question
Integrational Form of Maxwell's Equations: [...]
Answer
\(\begin{array}{rrl}\\ (\text{i})&\qquad\displaystyle\oint_{S}\mathbf{E}\cdot \mathrm{d}\mathbf{a}&=&\displaystyle\frac{1}{\varepsilon_{0}}\int_{V}\rho\ \mathrm{d}\tau\qquad &\text{(Gauss' law)}\\\\ (\text{ii})&\qquad\displaystyle\oint_{S}\mathbf{B}\cdot \mathrm{d}\mathbf{a}&=&0\qquad &\text{(Gauss's law for magnetism)}\\\\ (\text{iii})&\qquad\displaystyle\oint_{L}\ \mathbf{E} \cdot \mathrm{d}\boldsymbol{\mathbf{r}}&=&\displaystyle - \frac {\partial}{\partial t}\int_{S}\mathbf{B}\cdot\mathrm{d}\mathbf{a} \qquad &\text{(Faraday's law)}\\\\ (\text{iv})&\qquad\displaystyle\oint_{L}\ \mathbf{B} \cdot \mathrm{d}\boldsymbol{\mathbf{r}}&=&\displaystyle\mu_{0}\int_{S}\mathbf{J}\cdot\mathrm{d}\mathbf{a}+\mu_0 \epsilon_0 \frac{\partial}{\partial t}\int_{S}\mathbf{E}\cdot\mathrm{d}\mathbf{a}\qquad &\text{(Ampere's law with Maxwell's correction)}\\ \end{array}\)

Question
Integrational Form of Maxwell's Equations: [...]
Answer
?

Question
Integrational Form of Maxwell's Equations: [...]
Answer
\(\begin{array}{rrl}\\ (\text{i})&\qquad\displaystyle\oint_{S}\mathbf{E}\cdot \mathrm{d}\mathbf{a}&=&\displaystyle\frac{1}{\varepsilon_{0}}\int_{V}\rho\ \mathrm{d}\tau\qquad &\text{(Gauss' law)}\\\\ (\text{ii})&\qquad\displaystyle\oint_{S}\mathbf{B}\cdot \mathrm{d}\mathbf{a}&=&0\qquad &\text{(Gauss's law for magnetism)}\\\\ (\text{iii})&\qquad\displaystyle\oint_{L}\ \mathbf{E} \cdot \mathrm{d}\boldsymbol{\mathbf{r}}&=&\displaystyle - \frac {\partial}{\partial t}\int_{S}\mathbf{B}\cdot\mathrm{d}\mathbf{a} \qquad &\text{(Faraday's law)}\\\\ (\text{iv})&\qquad\displaystyle\oint_{L}\ \mathbf{B} \cdot \mathrm{d}\boldsymbol{\mathbf{r}}&=&\displaystyle\mu_{0}\int_{S}\mathbf{J}\cdot\mathrm{d}\mathbf{a}+\mu_0 \epsilon_0 \frac{\partial}{\partial t}\int_{S}\mathbf{E}\cdot\mathrm{d}\mathbf{a}\qquad &\text{(Ampere's law with Maxwell's correction)}\\ \end{array}\)
If you want to change selection, open document below and click on "Move attachment"

Integrational Form of Maxwell's Equations
Integrational Form of Maxwell's Equations: \(\begin{array}{rrl}\\ (\text{i})&\qquad\displaystyle\oint_{S}\mathbf{E}\cdot \mathrm{d}\mathbf{a}&=&\displaystyle\frac{1}{\varepsilon_{0}}\int_{V}\rho\ \mathrm{d}\tau\qquad &\text{(Gauss' law)}\\\\ (\text{ii})&\qquad\displaystyle\oint_{S}\mathbf{B}\cdot \mathrm{d}\mathbf{a}&=&0\qquad &\text{(Gauss's law for magnetism)}\\\\ (\text{iii})&\qquad\displaystyle\oint_{L}\ \mathbf{E} \cdot \mathrm{d}\boldsymbol{\mathbf{r}}&=&\displaystyle - \frac {\partial}{\partial t}\int_{S}\mathbf{B}\cdot\mathrm{d}\mathbf{a} \qquad &\text{(Faraday's law)}\\\\ (\text{iv})&\qquad\displaystyle\oint_{L}\ \mathbf{B} \cdot \mathrm{d}\boldsymbol{\mathbf{r}}&=&\displaystyle\mu_{0}\int_{S}\mathbf{J}\cdot\mathrm{d}\mathbf{a}+\mu_0 \epsilon_0 \frac{\partial}{\partial t}\int_{S}\mathbf{E}\cdot\mathrm{d}\mathbf{a}\qquad &\text{(Ampere's law with Maxwell's correction)}\\ \end{array}\)

Summary

statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Details

No repetitions


Discussion

Do you want to join discussion? Click here to log in or create user.