Differential Form of Maxwell's Equations in vacuum
Differential Form of Maxwell's Equations in Vacuum: \(\begin{array}{rrl}\\(\text{i})&\qquad\nabla\cdot\mathbf{E}&=&0\qquad &\text{(Gauss' law)}\\\\(\text{ii})&\qquad\nabla\cdot\mathbf{B}&=&0\qquad &\text{(Gauss's law for magnetism)}\\\\(\text{iii})&\qquad\nabla\times\mathbf{E}&=&\displaystyle-\frac{\partial\mathbf{B}}{\partial t}\qquad &\text{(Faraday's law)}\\\\(\text{iv})&\qquad\nabla\times\mathbf{B}&=&\displaystyle\mu_0 \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t}\qquad &\text{(Ampere's law with Maxwell's correction)}\end{array}\)
If you want to change selection, open original toplevel document below and click on "Move attachment"
Summary
status | not read | | reprioritisations | |
---|
last reprioritisation on | | | suggested re-reading day | |
---|
started reading on | | | finished reading on | |
---|
Details