If you want to change selection, open document below and click on "Move attachment"
Definition of Laplace Transform 对一个函数f(t)做拉普拉斯变换,可以将其从实数域(t)转换到复数域(s),它的定义为 \displaystyle {\mathcal {L}}[f(t)]=F(s)=\int _{0}^{\infty }f(t)e^{-st}\,\mathrm {d} t 其中,s=\sigma +i\omega,\sigma和\omega为实数 - 积分下限从0开始,从控制工程的角度来讲,不需要去研究时间0点之前的事情,而是把这部分留给哲学家 Summary
status | not learned | | measured difficulty | 37% [default] | | last interval [days] | |
---|
repetition number in this series | 0 | | memorised on | | | scheduled repetition | |
---|
scheduled repetition interval | | | last repetition or drill | | | | |
---|
Details
No repetitions