两条或两条以上根轨迹分支在\(s\)平面上相遇又立即分开的点,称为根轨迹的分离点,分离点的坐标\(d\)是下列方程的解:
\(\displaystyle\sum_{j=1}^m \frac{1}{d-z_j}=\sum_{i=1}^n \frac{1}{d-p_i}\)
式中,\(z_j\)为各开环零点的数值;\(p_i\)为各开环极点的数值;分离角为\(\displaystyle\frac{(2k+1)\pi}{n-m}\).
两条或两条以上根轨迹分支在\(s\)平面上相遇又立即分开的点,称为根轨迹的分离点,分离点的坐标\(d\)是下列方程的解:
\(\displaystyle\sum_{j=1}^m \frac{1}{d-z_j}=\sum_{i=1}^n \frac{1}{d-p_i}\)
式中,\(z_j\)为各开环零点的数值;\(p_i\)为各开环极点的数值;分离角为\(\displaystyle\frac{(2k+1)\pi}{n-m}\).
status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|
repetition number in this series | 0 | memorised on | scheduled repetition | ||||
scheduled repetition interval | last repetition or drill |