Do you want BuboFlash to help you learning these things? Or do you want to add or correct something? Click here to log in or create user.



Question
根轨迹的分离点与分离角:[...]
Answer

两条或两条以上根轨迹分支在\(s\)平面上相遇又立即分开的点,称为根轨迹的分离点,分离点的坐标\(d\)是下列方程的解:

\(\displaystyle\sum_{j=1}^m \frac{1}{d-z_j}=\sum_{i=1}^n \frac{1}{d-p_i}\)

式中,\(z_j\)为各开环零点的数值;\(p_i\)为各开环极点的数值;分离角为\(\displaystyle\frac{(2k+1)\pi}{n-m}\).


Question
根轨迹的分离点与分离角:[...]
Answer
?

Question
根轨迹的分离点与分离角:[...]
Answer

两条或两条以上根轨迹分支在\(s\)平面上相遇又立即分开的点,称为根轨迹的分离点,分离点的坐标\(d\)是下列方程的解:

\(\displaystyle\sum_{j=1}^m \frac{1}{d-z_j}=\sum_{i=1}^n \frac{1}{d-p_i}\)

式中,\(z_j\)为各开环零点的数值;\(p_i\)为各开环极点的数值;分离角为\(\displaystyle\frac{(2k+1)\pi}{n-m}\).

If you want to change selection, open document below and click on "Move attachment"

根轨迹绘制基本法则·法则五
根轨迹的分离点与分离角:两条或两条以上根轨迹分支在\(s\)平面上相遇又立即分开的点,称为根轨迹的分离点,分离点的坐标\(d\)是下列方程的解: \(\displaystyle\sum_{j=1}^m \frac{1}{d-z_j}=\sum_{i=1}^n \frac{1}{d-p_i}\) 式中,\(z_j\)为各开环零点的数值;\(p_i\)为各开环极点的数值;分离角为\(\displaystyle\frac{(2k+1)\pi}{n-m}\).

Summary

statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Details

No repetitions


Discussion

Do you want to join discussion? Click here to log in or create user.