在数学中,函数的正交规范性是用来描述一组函数具有两个关键特性:[...] 和 [...]的术语:
If \(y_{i}(x),y_{j}(x)\) are "orthonormal" if \(\left\langle y_{i}(x),y_{j}(x)\right\rangle_{w;(a,b)}=\delta_{ij}\equiv\left\{\begin{aligned}&1 & &i=j \cr&0 & &i\neq j\end{aligned}\right.\)
Answer
正交性(Orthogonality)和规范性(Normality)
Question
在数学中,函数的正交规范性是用来描述一组函数具有两个关键特性:[...] 和 [...]的术语:
If \(y_{i}(x),y_{j}(x)\) are "orthonormal" if \(\left\langle y_{i}(x),y_{j}(x)\right\rangle_{w;(a,b)}=\delta_{ij}\equiv\left\{\begin{aligned}&1 & &i=j \cr&0 & &i\neq j\end{aligned}\right.\)
Answer
?
Question
在数学中,函数的正交规范性是用来描述一组函数具有两个关键特性:[...] 和 [...]的术语:
If \(y_{i}(x),y_{j}(x)\) are "orthonormal" if \(\left\langle y_{i}(x),y_{j}(x)\right\rangle_{w;(a,b)}=\delta_{ij}\equiv\left\{\begin{aligned}&1 & &i=j \cr&0 & &i\neq j\end{aligned}\right.\)
Answer
正交性(Orthogonality)和规范性(Normality)
If you want to change selection, open document below and click on "Move attachment"
Definition of the orthonormality of a funciton 在数学中,函数的正交规范性是用来描述一组函数具有两个关键特性:正交性(Orthogonality)和规范性(Normality)的术语: If \(y_{i}(x),y_{j}(x)\) are "orthonormal" if \(\left\langle y_{i}(x),y_{j}(x)\right\rangle_{w;(a,b)}=\delta_{ij}\equiv\left\{\begin{aligned}&1 & &i=j \cr&0 & &a
Summary
status
not learned
measured difficulty
37% [default]
last interval [days]
repetition number in this series
0
memorised on
scheduled repetition
scheduled repetition interval
last repetition or drill
Details
No repetitions
Discussion
Do you want to join discussion? Click here to log in or create user.