\(\displaystyle f(x)=\frac{a_{0}}{2}+\sum\limits^{\infty}_{n=1}a_{n}\cos\left(\frac{n\pi x}{L}\right)+b_{n}\sin\left(\frac{n\pi x}{L}\right)\)
where
- \(\displaystyle a_{0}=\frac{1}{L}\int^{L}_{-L}f(x)dx\equiv \left\langle1,f\right\rangle\).
- \(\displaystyle a_{n}=\frac{1}{L}\int^{L}_{-L}f(x)\cos\left(\frac{n\pi x}{L}\right)dx\equiv \frac{\left\langle\cos_{n},f\right\rangle}{\left\langle\cos_{n},\cos_{n}\right\rangle}\).
- \(\displaystyle b_{n}=\frac{1}{L}\int^{L}_{-L}f(x)\sin\left(\frac{n\pi x}{L}\right)dx\equiv \frac{\left\langle\sin_{n},f\right\rangle}{\left\langle\sin_{n},\sin_{n}\right\rangle}\).
\(\displaystyle f(x)=\frac{a_{0}}{2}+\sum\limits^{\infty}_{n=1}a_{n}\cos\left(\frac{n\pi x}{L}\right)+b_{n}\sin\left(\frac{n\pi x}{L}\right)\)
where
- \(\displaystyle a_{0}=\frac{1}{L}\int^{L}_{-L}f(x)dx\equiv \left\langle1,f\right\rangle\).
- \(\displaystyle a_{n}=\frac{1}{L}\int^{L}_{-L}f(x)\cos\left(\frac{n\pi x}{L}\right)dx\equiv \frac{\left\langle\cos_{n},f\right\rangle}{\left\langle\cos_{n},\cos_{n}\right\rangle}\).
- \(\displaystyle b_{n}=\frac{1}{L}\int^{L}_{-L}f(x)\sin\left(\frac{n\pi x}{L}\right)dx\equiv \frac{\left\langle\sin_{n},f\right\rangle}{\left\langle\sin_{n},\sin_{n}\right\rangle}\).
status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|
repetition number in this series | 0 | memorised on | scheduled repetition | ||||
scheduled repetition interval | last repetition or drill |