Do you want BuboFlash to help you learning these things? Or do you want to add or correct something? Click here to log in or create user.



Question
For specific weight funciton \(w(x)=1\) and domain \(x\in(-L,L)\), then: [Important inner products]
Answer

- \(\displaystyle\left\langle \cos\left(\frac{n\pi x}{L}\right), \cos\left(\frac{m\pi x}{L}\right)\right\rangle=\int^{L}_{-L}\cos\left(\frac{n\pi x}{L}\right)\ \cos\left(\frac{m\pi x}{L}\right)\cdot1dx=L\cdot\delta_{nm}\)
- \(\displaystyle\left\langle \sin\left(\frac{n\pi x}{L}\right), \sin\left(\frac{m\pi x}{L}\right)\right\rangle=\int^{L}_{-L}\sin\left(\frac{n\pi x}{L}\right)\ \sin\left(\frac{m\pi x}{L}\right)\cdot1dx=L\cdot\delta_{nm}\)
- \(\displaystyle\left\langle \cos\left(\frac{n\pi x}{L}\right), \sin\left(\frac{m\pi x}{L}\right)\right\rangle=\int^{L}_{-L}\cos\left(\frac{n\pi x}{L}\right)\ \sin\left(\frac{m\pi x}{L}\right)\cdot1dx=0\)

Question
For specific weight funciton \(w(x)=1\) and domain \(x\in(-L,L)\), then: [Important inner products]
Answer
?

Question
For specific weight funciton \(w(x)=1\) and domain \(x\in(-L,L)\), then: [Important inner products]
Answer

- \(\displaystyle\left\langle \cos\left(\frac{n\pi x}{L}\right), \cos\left(\frac{m\pi x}{L}\right)\right\rangle=\int^{L}_{-L}\cos\left(\frac{n\pi x}{L}\right)\ \cos\left(\frac{m\pi x}{L}\right)\cdot1dx=L\cdot\delta_{nm}\)
- \(\displaystyle\left\langle \sin\left(\frac{n\pi x}{L}\right), \sin\left(\frac{m\pi x}{L}\right)\right\rangle=\int^{L}_{-L}\sin\left(\frac{n\pi x}{L}\right)\ \sin\left(\frac{m\pi x}{L}\right)\cdot1dx=L\cdot\delta_{nm}\)
- \(\displaystyle\left\langle \cos\left(\frac{n\pi x}{L}\right), \sin\left(\frac{m\pi x}{L}\right)\right\rangle=\int^{L}_{-L}\cos\left(\frac{n\pi x}{L}\right)\ \sin\left(\frac{m\pi x}{L}\right)\cdot1dx=0\)
If you want to change selection, open document below and click on "Move attachment"

Important Inner Products
For specific weight funciton \(w(x)=1\) and domain \(x\in(-L,L)\), then - \(\displaystyle\left\langle \cos\left(\frac{n\pi x}{L}\right), \cos\left(\frac{m\pi x}{L}\right)\right\rangle=\int^{L}_{-L}\cos\left(\frac{n\pi x}{L}\right)\ \cos\left(\frac{m\pi x}{L}\right)\cdot1dx=L\cdot\delta_{nm}\) - \(\displaystyle\left\langle \sin\left(\frac{n\pi x}{L}\right), \sin\left(\frac{m\pi x}{L}\right)\right\rangle=\int^{L}_{-L}\sin\left(\frac{n\pi x}{L}\right)\ \sin\left(\frac{m\pi x}{L}\right)\cdot1dx=L\cdot\delta_{nm}\) - \(\displaystyle\left\langle \cos\left(\frac{n\pi x}{L}\right), \sin\left(\frac{m\pi x}{L}\right)\right\rangle=\int^{L}_{-L}\cos\left(\frac{n\pi x}{L}\right)\ \sin\left(\frac{m\pi x}{L}\right)\cdot1dx=0\)

Summary

statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Details

No repetitions


Discussion

Do you want to join discussion? Click here to log in or create user.