\(\displaystyle f(x)=\sum\limits^{+\infty}_{n=-\infty}c_{n}e^{j\frac{n\pi x}{L}}\)
Where \(\displaystyle c_{n}=\frac{1}{2L}\int^{L}_{-L}f(x)e^{j\frac{n\pi x}{L}}dx\).
\(\displaystyle f(x)=\sum\limits^{+\infty}_{n=-\infty}c_{n}e^{j\frac{n\pi x}{L}}\)
Where \(\displaystyle c_{n}=\frac{1}{2L}\int^{L}_{-L}f(x)e^{j\frac{n\pi x}{L}}dx\).
status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|
repetition number in this series | 0 | memorised on | scheduled repetition | ||||
scheduled repetition interval | last repetition or drill |