Do you want BuboFlash to help you learning these things? Click here to log in or create user.

status | not read | reprioritisations | ||
---|---|---|---|---|

last reprioritisation on | reading queue position [%] | |||

started reading on | finished reading on |

People Isaac Newton Leonhard Euler Émile Picard Józef Maria Hoene-Wroński Ernst Lindelöf Rudolf Lipschitz Augustin-Louis Cauchy John Crank Phyllis Nicolson Carl David Tolmé Runge Martin Wilhelm Kutta v t e <span>In mathematics, the finite element method (FEM) is a numerical technique for finding approximate solutions to boundary value problems for partial differential equations. It uses subdivision of a whole problem domain into simpler parts, called finite elements, and variational methods from the calculus of variations to solve the problem by minimizing an as

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

In mathematics, the finite element method (FEM) is a numerical technique for finding approximate solutions to boundary value problems for partial differential equations.

People Isaac Newton Leonhard Euler Émile Picard Józef Maria Hoene-Wroński Ernst Lindelöf Rudolf Lipschitz Augustin-Louis Cauchy John Crank Phyllis Nicolson Carl David Tolmé Runge Martin Wilhelm Kutta v t e <span>In mathematics, the finite element method (FEM) is a numerical technique for finding approximate solutions to boundary value problems for partial differential equations. It uses subdivision of a whole problem domain into simpler parts, called finite elements, and variational methods from the calculus of variations to solve the problem by minimizing an as