Here is a summary of our algorithm for moving from one position to another. We are currently at position θ current . We then propose to move one position right or one position left. The specific proposal is determined by flipping a coin, which can result in 50% heads (move right) or 50% tails (move left). The range of possible proposed moves, and the probability of proposing each, is called the proposal distribution. In the present algorithm, the proposal distribution is very simple: It has only two values with 50-50 probabilities. Having proposed a move, we then decide whether or not to accept it. The acceptance decision is based on the value of the target distribution at the proposed position, relative to the value of the target distribution at our current position. Specifically, if the target distribution is greater at the proposed position than at our current position, then we definitely accept the proposed move: We always move higher if we can. On the other hand, if the target position is less at the proposed position than at our current position, we accept the move probabilistically: We move to the proposed position with probability p move =P(θ proposed )/P(θ current ),whereP(θ) is the value of the target distribution at θ .We can combine these two possibilities, of the target distribution being higher or lower at the proposed position than at our current position, into a single expression for the probability of moving to the proposed position: p move = min P(θ proposed ) P(θ current ) ,1 (7.1) Notice that Equation 7.1 says that when P(θ proposed )>P(θ current ),thenp move =1. Notice also that the target distribution, P(θ), does not need to be normalized, which means it does not need to sum to 1 as a probability distribution must. This is because what matters for our choice is the ratio, P(θ proposed )/P(θ current ), not the absolute magnitude of P(θ)