Do you want BuboFlash to help you learning these things? Click here to log in or create user.

status | not read | reprioritisations | ||
---|---|---|---|---|

last reprioritisation on | suggested re-reading day | |||

started reading on | finished reading on |

ions to consider. The concept of exponential families is credited to [1] E. J. G. Pitman, [2] G. Darmois, [3] and B. O. Koopman [4] in 1935–36. The term exponential class is sometimes used in place of "exponential family". [5] <span>The exponential family of distributions provides a general framework for selecting a possible alternative parameterisation of the distribution, in terms of natural parameters, and for defining useful sample statistics, called the natural sufficient statistics of the family. Contents [hide] 1 Definition 1.1 Examples of exponential family distributions 1.2 Scalar parameter 1.3 Factorization of the variables involved 1.4 Vector parameter 1.5 Vect

status | not read | reprioritisations | ||
---|---|---|---|---|

last reprioritisation on | suggested re-reading day | |||

started reading on | finished reading on |

company, see Vector Space Systems. [imagelink] Vector addition and scalar multiplication: a vector v (blue) is added to another vector w (red, upper illustration). Below, w is stretched by a factor of 2, yielding the sum v + 2w. <span>A vector space (also called a linear space) is a collection of objects called vectors, which may be added together and multiplied ("scaled") by numbers, called scalars. Scalars are often taken to be real numbers, but there are also vector spaces with scalar multiplication by complex numbers, rational numbers, or generally any field. The operations of v

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

A vector space (also called a linear space) is a collection of objects called vectors, which may be added together and multiplied ("scaled") by numbers, called scalars.

company, see Vector Space Systems. [imagelink] Vector addition and scalar multiplication: a vector v (blue) is added to another vector w (red, upper illustration). Below, w is stretched by a factor of 2, yielding the sum v + 2w. <span>A vector space (also called a linear space) is a collection of objects called vectors, which may be added together and multiplied ("scaled") by numbers, called scalars. Scalars are often taken to be real numbers, but there are also vector spaces with scalar multiplication by complex numbers, rational numbers, or generally any field. The operations of v

status | not read | reprioritisations | ||
---|---|---|---|---|

last reprioritisation on | suggested re-reading day | |||

started reading on | finished reading on |

roperties, which in some cases can be visualized as arrows. Vector spaces are the subject of linear algebra and are well characterized by their dimension, which, roughly speaking, specifies the number of independent directions in the space. <span>Infinite-dimensional vector spaces arise naturally in mathematical analysis, as function spaces, whose vectors are functions. These vector spaces are generally endowed with additional structure, which may be a topology, allowing the consideration of issues of proximity and continuity. Among these topologies, those that are defined by a norm or inner product are more commonly used, as having a notion of distance between two vectors. This is particularly the case of Banach spaces and Hilbert spaces, which are fundamental in mathematical analysis. Historically, the first ideas leading to vector spaces can be traced back as far as the 17th century's analytic geometry, matrices, systems of linear equations, and Euclidean vectors.

status | not read | reprioritisations | ||
---|---|---|---|---|

last reprioritisation on | suggested re-reading day | |||

started reading on | finished reading on |

Infinite-dimensional vector spaces arise naturally in mathematical analysis, as function spaces, whose vectors are functions. These vector spaces are generally endowed with additional structure, which may be a topology, allowing the consideration of issues of proximity and continuity. Among these topologies, t

roperties, which in some cases can be visualized as arrows. Vector spaces are the subject of linear algebra and are well characterized by their dimension, which, roughly speaking, specifies the number of independent directions in the space. <span>Infinite-dimensional vector spaces arise naturally in mathematical analysis, as function spaces, whose vectors are functions. These vector spaces are generally endowed with additional structure, which may be a topology, allowing the consideration of issues of proximity and continuity. Among these topologies, those that are defined by a norm or inner product are more commonly used, as having a notion of distance between two vectors. This is particularly the case of Banach spaces and Hilbert spaces, which are fundamental in mathematical analysis. Historically, the first ideas leading to vector spaces can be traced back as far as the 17th century's analytic geometry, matrices, systems of linear equations, and Euclidean vectors.

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

Infinite-dimensional vector spaces arise naturally in mathematical analysis, as function spaces, whose vectors are functions.

roperties, which in some cases can be visualized as arrows. Vector spaces are the subject of linear algebra and are well characterized by their dimension, which, roughly speaking, specifies the number of independent directions in the space. <span>Infinite-dimensional vector spaces arise naturally in mathematical analysis, as function spaces, whose vectors are functions. These vector spaces are generally endowed with additional structure, which may be a topology, allowing the consideration of issues of proximity and continuity. Among these topologies, those that are defined by a norm or inner product are more commonly used, as having a notion of distance between two vectors. This is particularly the case of Banach spaces and Hilbert spaces, which are fundamental in mathematical analysis. Historically, the first ideas leading to vector spaces can be traced back as far as the 17th century's analytic geometry, matrices, systems of linear equations, and Euclidean vectors.

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

It is also not happenstance that the downfall of the disputational culture roughly coincided with the introduction of new printing techniques in Europe by Johannes Gutenberg, around 1440.

ich is thoroughly disputational, with Meditations on First Philosophy (1641) by Descartes, a book argued through long paragraphs driven by the first-person singular. The nature of intellectual enquiry shifted with the downfall of disputation. <span>It is also not happenstance that the downfall of the disputational culture roughly coincided with the introduction of new printing techniques in Europe by Johannes Gutenberg, around 1440. Before that, books were a rare commodity, and education was conducted almost exclusively by means of oral contact between masters and pupils in the form of expository lectures in which

status | not read | reprioritisations | ||
---|---|---|---|---|

last reprioritisation on | suggested re-reading day | |||

started reading on | finished reading on |

are considered the most important and central in the theory of stochastic processes, [1] [4] [23] and were discovered repeatedly and independently, both before and after Bachelier and Erlang, in different settings and countries. [21] [24] <span>The term random function is also used to refer to a stochastic or random process, [25] [26] because a stochastic process can also be interpreted as a random element in a function space. [27] [28] The terms stochastic process and random process are used interchangeably, often with no specific mathematical space for the set that indexes the random variables. [27] [29]

status | not read | reprioritisations | ||
---|---|---|---|---|

last reprioritisation on | suggested re-reading day | |||

started reading on | finished reading on |

hangeably, often with no specific mathematical space for the set that indexes the random variables. [27] [29] But often these two terms are used when the random variables are indexed by the integers or an interval of the real line. [5] [29] <span>If the random variables are indexed by the Cartesian plane or some higher-dimensional Euclidean space, then the collection of random variables is usually called a random field instead. [5] [30] The values of a stochastic process are not always numbers and can be vectors or other mathematical objects. [5] [28] Based on their properties, stochastic processes can be d

status | not read | reprioritisations | ||
---|---|---|---|---|

last reprioritisation on | suggested re-reading day | |||

started reading on | finished reading on |

arkets have motivated the extensive use of stochastic processes in finance. [16] [17] [18] Applications and the study of phenomena have in turn inspired the proposal of new stochastic processes. Examples of such stochastic processes include <span>the Wiener process or Brownian motion process, [a] used by Louis Bachelier to study price changes on the Paris Bourse, [21] and the Poisson process, used by A. K. Erlang to study the number of phone calls occurring in a certain period of time. [22] These two stochastic processes are considered the mo

status | not read | reprioritisations | ||
---|---|---|---|---|

last reprioritisation on | suggested re-reading day | |||

started reading on | finished reading on |

element in the set. [4] [5] The set used to index the random variables is called the index set. Historically, the index set was some subset of the real line, such as the natural numbers, giving the index set the interpretation of time. [1] <span>Each random variable in the collection takes values from the same mathematical space known as the state space. This state space can be, for example, the integers, the real line or n {\displaystyle n} -dimensional Euclidean space. [1] [5] An increment i

status | not read | reprioritisations | ||
---|---|---|---|---|

last reprioritisation on | suggested re-reading day | |||

started reading on | finished reading on |

stochastic or random process can be defined as a collection of random variables that is indexed by some mathematical set, meaning that each random variable of the stochastic process is uniquely associated with an element in the set. [4] [5] <span>The set used to index the random variables is called the index set. Historically, the index set was some subset of the real line, such as the natural numbers, giving the index set the interpretation of time. [1] Each random variable in the collection t

status | not read | reprioritisations | ||
---|---|---|---|---|

last reprioritisation on | suggested re-reading day | |||

started reading on | finished reading on |

r n {\displaystyle n} -dimensional Euclidean space. [1] [5] An increment is the amount that a stochastic process changes between two index values, often interpreted as two points in time. [48] [49] <span>A stochastic process can have many outcomes, due to its randomness, and a single outcome of a stochastic process is called, among other names, a sample function or realization. [28] [50] [imagelink] A single computer-simulated sample function or realization, among other terms, of a three-dimensional Wiener or Brownian motion process for time 0 ≤ t ≤ 2.

status | not read | reprioritisations | ||
---|---|---|---|---|

last reprioritisation on | suggested re-reading day | |||

started reading on | finished reading on |

f a three-dimensional Wiener or Brownian motion process for time 0 ≤ t ≤ 2. The index set of this stochastic process is the non-negative numbers, while its state space is three-dimensional Euclidean space. Classifications[edit source] <span>A stochastic process can be classified in different ways, for example, by its state space, its index set, or the dependence among the random variables. One common way of classification is by the cardinality of the index set and the state space. [51] [52] [53] When interpreted as time, if the index set of a stochastic process has a fi

status | not read | reprioritisations | ||
---|---|---|---|---|

last reprioritisation on | suggested re-reading day | |||

started reading on | finished reading on |

} -dimensional vector process or n {\displaystyle n} -vector process. [51] [52] Examples of stochastic processes[edit source] Bernoulli process[edit source] Main article: Bernoulli process <span>One of the simplest stochastic processes is the Bernoulli process, [60] which is a sequence of independent and identically distributed (iid) random variables, where each random variable takes either the value one or zero, say one with probability p {\displaystyle p} and zero with probability 1 − p {\displaystyle 1-p} . This process can be likened to somebody flipping a coin, where the probability of obtaining a head is p {\displaystyle p} and its value is on

status | not read | reprioritisations | ||
---|---|---|---|---|

last reprioritisation on | suggested re-reading day | |||

started reading on | finished reading on |

one, while the value of a tail is zero. [61] In other words, a Bernoulli process is a sequence of iid Bernoulli random variables, [62] where each coin flip is a Bernoulli trial. [63] Random walk[edit source] Main article: Random walk <span>Random walks are stochastic processes that are usually defined as sums of iid random variables or random vectors in Euclidean space, so they are processes that change in discrete time. [64] [65] [66] [67] [68] But some also use the term to refer to processes that change in continuous time, [69] particularly the Wiener process used in finance, which has led to some c

status | not read | reprioritisations | ||
---|---|---|---|---|

last reprioritisation on | suggested re-reading day | |||

started reading on | finished reading on |

ere are other various types of random walks, defined so their state spaces can be other mathematical objects, such as lattices and groups, and in general they are highly studied and have many applications in different disciplines. [69] [71] <span>A classic example of a random walk is known as the simple random walk, which is a stochastic process in discrete time with the integers as the state space, and is based on a Bernoulli process, where each iid Bernoulli variable takes either the value positive one or negative one. In other words, the simple random walk takes place on the integers, and its value increases by one with probability, say, p {\displaystyle p}

status | not read | reprioritisations | ||
---|---|---|---|---|

last reprioritisation on | suggested re-reading day | |||

started reading on | finished reading on |

wnian motion due to its historical connection as a model for Brownian movement in liquids. [75] [76] [76] [77] [imagelink] Realizations of Wiener processes (or Brownian motion processes) with drift (blue) and without drift (red). <span>Playing a central role in the theory of probability, the Wiener process is often considered the most important and studied stochastic process, with connections to other stochastic processes. [1] [2] [3] [78] [79] [80] [81] Its index set and state space are the non-negative numbers and real numbers, respectively, so it has both continuous index set and states space. [82] But the process can be defined more generally so its state space can be n {\displaystyle n} -dimensional Euclidean space. [71] [79] [83]

status | not read | reprioritisations | ||
---|---|---|---|---|

last reprioritisation on | suggested re-reading day | |||

started reading on | finished reading on |

, so it has both continuous index set and states space. [82] But the process can be defined more generally so its state space can be n {\displaystyle n} -dimensional Euclidean space. [71] [79] [83] <span>If the mean of any increment is zero, then the resulting Wiener or Brownian motion process is said to have zero drift. If the mean of the increment for any two points in time is equal to the time difference multiplied by some constant μ {\displaystyle \mu } , w

status | not read | reprioritisations | ||
---|---|---|---|---|

last reprioritisation on | suggested re-reading day | |||

started reading on | finished reading on |

stant μ {\displaystyle \mu } , which is a real number, then the resulting stochastic process is said to have drift μ {\displaystyle \mu } . [84] [85] [86] <span>Almost surely, a sample path of a Wiener process is continuous everywhere but nowhere differentiable. It can be considered a continuous version of the simple random walk. [49] [85] The process arises as the mathematical limit of other stochastic processes such as certain random walks rescaled, [87] [88] which is the subject of Donsker's theorem or inva

status | not read | reprioritisations | ||
---|---|---|---|---|

last reprioritisation on | suggested re-reading day | |||

started reading on | finished reading on |

e space can be n {\displaystyle n} -dimensional Euclidean space. [71] [79] [83] If the mean of any increment is zero, then the resulting Wiener or Brownian motion process is said to have zero drift. <span>If the mean of the increment for any two points in time is equal to the time difference multiplied by some constant μ {\displaystyle \mu } , which is a real number, then the resulting stochastic process is said to have drift μ {\displaystyle \mu } . [84] [85] [86] Almost surely, a sample path of a Wiener process is continuous everywhere but nowhere differentiable. It can be considered a continuous version of the simple rando

status | not read | reprioritisations | ||
---|---|---|---|---|

last reprioritisation on | suggested re-reading day | |||

started reading on | finished reading on |

arameter. This process has the natural numbers as its state space and the non-negative numbers as its index set. This process is also called the Poisson counting process, since it can be interpreted as an example of a counting process. [99] <span>If a Poisson process is defined with a single positive constant, then the process is called a homogeneous Poisson process. [99] [101] The homogeneous Poisson process (in continuous time) is a member of important classes of stochastic processes such as Markov processes and Lévy processes. [49] The homogen

status | not read | reprioritisations | ||
---|---|---|---|---|

last reprioritisation on | suggested re-reading day | |||

started reading on | finished reading on |

constant, then the process is called a homogeneous Poisson process. [99] [101] The homogeneous Poisson process (in continuous time) is a member of important classes of stochastic processes such as Markov processes and Lévy processes. [49] <span>The homogeneous Poisson process can be defined and generalized in different ways. It can be defined such that its index set is the real line, and this stochastic process is also called the stationary Poisson process. [102] [103] If the parameter constant of the Poisson process is replaced with some non-negative integrable function of t {\displaystyle t} ,

status | not read | reprioritisations | ||
---|---|---|---|---|

last reprioritisation on | suggested re-reading day | |||

started reading on | finished reading on |

sses. [49] The homogeneous Poisson process can be defined and generalized in different ways. It can be defined such that its index set is the real line, and this stochastic process is also called the stationary Poisson process. [102] [103] <span>If the parameter constant of the Poisson process is replaced with some non-negative integrable function of t {\displaystyle t} , the resulting process is called an inhomogeneous or nonhomogeneous Poisson process, where the average density of points of the process is no longer constant. [104] Serving as a fundamental process in queueing theory, the Poisson process is an important process for mathematical models, where it finds applications for models of events randoml

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

the Wiener process or Brownian motion process, [a] used by Louis Bachelier to study price changes on the Paris Bourse

arkets have motivated the extensive use of stochastic processes in finance. [16] [17] [18] Applications and the study of phenomena have in turn inspired the proposal of new stochastic processes. Examples of such stochastic processes include <span>the Wiener process or Brownian motion process, [a] used by Louis Bachelier to study price changes on the Paris Bourse, [21] and the Poisson process, used by A. K. Erlang to study the number of phone calls occurring in a certain period of time. [22] These two stochastic processes are considered the mo

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

The term random function is also used to refer to a stochastic or random process, [25] [26] because a stochastic process can also be interpreted as a random element in a function space. <

are considered the most important and central in the theory of stochastic processes, [1] [4] [23] and were discovered repeatedly and independently, both before and after Bachelier and Erlang, in different settings and countries. [21] [24] <span>The term random function is also used to refer to a stochastic or random process, [25] [26] because a stochastic process can also be interpreted as a random element in a function space. [27] [28] The terms stochastic process and random process are used interchangeably, often with no specific mathematical space for the set that indexes the random variables. [27] [29]

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

The term random function is also used to refer to a stochastic or random process, [25] [26] because a stochastic process can also be interpreted as a random element in a function space.

are considered the most important and central in the theory of stochastic processes, [1] [4] [23] and were discovered repeatedly and independently, both before and after Bachelier and Erlang, in different settings and countries. [21] [24] <span>The term random function is also used to refer to a stochastic or random process, [25] [26] because a stochastic process can also be interpreted as a random element in a function space. [27] [28] The terms stochastic process and random process are used interchangeably, often with no specific mathematical space for the set that indexes the random variables. [27] [29]

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

If the random variables are indexed by the Cartesian plane or some higher-dimensional Euclidean space, then the collection of random variables is usually called a random field instead.

hangeably, often with no specific mathematical space for the set that indexes the random variables. [27] [29] But often these two terms are used when the random variables are indexed by the integers or an interval of the real line. [5] [29] <span>If the random variables are indexed by the Cartesian plane or some higher-dimensional Euclidean space, then the collection of random variables is usually called a random field instead. [5] [30] The values of a stochastic process are not always numbers and can be vectors or other mathematical objects. [5] [28] Based on their properties, stochastic processes can be d

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

The set used to index the random variables is called the index set.

stochastic or random process can be defined as a collection of random variables that is indexed by some mathematical set, meaning that each random variable of the stochastic process is uniquely associated with an element in the set. [4] [5] <span>The set used to index the random variables is called the index set. Historically, the index set was some subset of the real line, such as the natural numbers, giving the index set the interpretation of time. [1] Each random variable in the collection t

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

Each random variable in the collection takes values from the same mathematical space known as the state space.

element in the set. [4] [5] The set used to index the random variables is called the index set. Historically, the index set was some subset of the real line, such as the natural numbers, giving the index set the interpretation of time. [1] <span>Each random variable in the collection takes values from the same mathematical space known as the state space. This state space can be, for example, the integers, the real line or n {\displaystyle n} -dimensional Euclidean space. [1] [5] An increment i

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

A stochastic process can have many outcomes, due to its randomness, and a single outcome of a stochastic process is called, among other names, a sample function or realization

r n {\displaystyle n} -dimensional Euclidean space. [1] [5] An increment is the amount that a stochastic process changes between two index values, often interpreted as two points in time. [48] [49] <span>A stochastic process can have many outcomes, due to its randomness, and a single outcome of a stochastic process is called, among other names, a sample function or realization. [28] [50] [imagelink] A single computer-simulated sample function or realization, among other terms, of a three-dimensional Wiener or Brownian motion process for time 0 ≤ t ≤ 2.

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

A stochastic process can be classified in different ways, for example, by its state space, its index set, or the dependence among the random variables.

f a three-dimensional Wiener or Brownian motion process for time 0 ≤ t ≤ 2. The index set of this stochastic process is the non-negative numbers, while its state space is three-dimensional Euclidean space. Classifications[edit source] <span>A stochastic process can be classified in different ways, for example, by its state space, its index set, or the dependence among the random variables. One common way of classification is by the cardinality of the index set and the state space. [51] [52] [53] When interpreted as time, if the index set of a stochastic process has a fi

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

A stochastic process can be classified in different ways, for example, by its state space, its index set, or the dependence among the random variables.

f a three-dimensional Wiener or Brownian motion process for time 0 ≤ t ≤ 2. The index set of this stochastic process is the non-negative numbers, while its state space is three-dimensional Euclidean space. Classifications[edit source] <span>A stochastic process can be classified in different ways, for example, by its state space, its index set, or the dependence among the random variables. One common way of classification is by the cardinality of the index set and the state space. [51] [52] [53] When interpreted as time, if the index set of a stochastic process has a fi

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

One of the simplest stochastic processes is the Bernoulli process, [60] which is a sequence of independent and identically distributed (iid) Bernoulli variables.

} -dimensional vector process or n {\displaystyle n} -vector process. [51] [52] Examples of stochastic processes[edit source] Bernoulli process[edit source] Main article: Bernoulli process <span>One of the simplest stochastic processes is the Bernoulli process, [60] which is a sequence of independent and identically distributed (iid) random variables, where each random variable takes either the value one or zero, say one with probability p {\displaystyle p} and zero with probability 1 − p {\displaystyle 1-p} . This process can be likened to somebody flipping a coin, where the probability of obtaining a head is p {\displaystyle p} and its value is on

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

Random walks are stochastic processes that are usually defined as sums of iid random variables or random vectors in Euclidean space, so they are processes that change in discrete time.

one, while the value of a tail is zero. [61] In other words, a Bernoulli process is a sequence of iid Bernoulli random variables, [62] where each coin flip is a Bernoulli trial. [63] Random walk[edit source] Main article: Random walk <span>Random walks are stochastic processes that are usually defined as sums of iid random variables or random vectors in Euclidean space, so they are processes that change in discrete time. [64] [65] [66] [67] [68] But some also use the term to refer to processes that change in continuous time, [69] particularly the Wiener process used in finance, which has led to some c

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

Random walks are stochastic processes that are usually defined as sums of iid random variables or random vectors in Euclidean space, so they are processes that change in discrete time.

one, while the value of a tail is zero. [61] In other words, a Bernoulli process is a sequence of iid Bernoulli random variables, [62] where each coin flip is a Bernoulli trial. [63] Random walk[edit source] Main article: Random walk <span>Random walks are stochastic processes that are usually defined as sums of iid random variables or random vectors in Euclidean space, so they are processes that change in discrete time. [64] [65] [66] [67] [68] But some also use the term to refer to processes that change in continuous time, [69] particularly the Wiener process used in finance, which has led to some c

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

A classic example of a random walk is known as the simple random walk, which is a stochastic process in discrete time with the integers as the state space, and is based on a Bernoulli process, where each iid Bernoulli variable takes either the value positive one or negative one.

ere are other various types of random walks, defined so their state spaces can be other mathematical objects, such as lattices and groups, and in general they are highly studied and have many applications in different disciplines. [69] [71] <span>A classic example of a random walk is known as the simple random walk, which is a stochastic process in discrete time with the integers as the state space, and is based on a Bernoulli process, where each iid Bernoulli variable takes either the value positive one or negative one. In other words, the simple random walk takes place on the integers, and its value increases by one with probability, say, p {\displaystyle p}

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

A classic example of a random walk is known as the simple random walk, which is a stochastic process in discrete time with the integers as the state space, and is based on a Bernoulli process, where each iid Bernoulli variable takes either the value positive one or negative one.

ere are other various types of random walks, defined so their state spaces can be other mathematical objects, such as lattices and groups, and in general they are highly studied and have many applications in different disciplines. [69] [71] <span>A classic example of a random walk is known as the simple random walk, which is a stochastic process in discrete time with the integers as the state space, and is based on a Bernoulli process, where each iid Bernoulli variable takes either the value positive one or negative one. In other words, the simple random walk takes place on the integers, and its value increases by one with probability, say, p {\displaystyle p}

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

Playing a central role in the theory of probability, the Wiener process is often considered the most important and studied stochastic process, with connections to other stochastic processes. [1] [2] [3] [78] [79] [80] [81] Its index set and state space are

wnian motion due to its historical connection as a model for Brownian movement in liquids. [75] [76] [76] [77] [imagelink] Realizations of Wiener processes (or Brownian motion processes) with drift (blue) and without drift (red). <span>Playing a central role in the theory of probability, the Wiener process is often considered the most important and studied stochastic process, with connections to other stochastic processes. [1] [2] [3] [78] [79] [80] [81] Its index set and state space are the non-negative numbers and real numbers, respectively, so it has both continuous index set and states space. [82] But the process can be defined more generally so its state space can be n {\displaystyle n} -dimensional Euclidean space. [71] [79] [83]

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

Playing a central role in the theory of probability, the Wiener process is often considered the most important and studied stochastic process, with connections to other stochastic processes. [1] [2] [3] [78] [79] [80] [81] Its index set and state space are the non-negative numbers and real numbers, respectively, so it has both continuous index set and states space.

wnian motion due to its historical connection as a model for Brownian movement in liquids. [75] [76] [76] [77] [imagelink] Realizations of Wiener processes (or Brownian motion processes) with drift (blue) and without drift (red). <span>Playing a central role in the theory of probability, the Wiener process is often considered the most important and studied stochastic process, with connections to other stochastic processes. [1] [2] [3] [78] [79] [80] [81] Its index set and state space are the non-negative numbers and real numbers, respectively, so it has both continuous index set and states space. [82] But the process can be defined more generally so its state space can be n {\displaystyle n} -dimensional Euclidean space. [71] [79] [83]

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

If the mean of any increment is zero, then the resulting Wiener or Brownian motion process is said to have zero drift.

, so it has both continuous index set and states space. [82] But the process can be defined more generally so its state space can be n {\displaystyle n} -dimensional Euclidean space. [71] [79] [83] <span>If the mean of any increment is zero, then the resulting Wiener or Brownian motion process is said to have zero drift. If the mean of the increment for any two points in time is equal to the time difference multiplied by some constant μ {\displaystyle \mu } , w

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

If the mean of any increment is zero, then the resulting Wiener or Brownian motion process is said to have zero drift.

, so it has both continuous index set and states space. [82] But the process can be defined more generally so its state space can be n {\displaystyle n} -dimensional Euclidean space. [71] [79] [83] <span>If the mean of any increment is zero, then the resulting Wiener or Brownian motion process is said to have zero drift. If the mean of the increment for any two points in time is equal to the time difference multiplied by some constant μ {\displaystyle \mu } , w

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

If the mean of the increment for any two points in time is equal to the time difference multiplied by some constant , then the resulting stochastic process is said to have drift

e space can be n {\displaystyle n} -dimensional Euclidean space. [71] [79] [83] If the mean of any increment is zero, then the resulting Wiener or Brownian motion process is said to have zero drift. <span>If the mean of the increment for any two points in time is equal to the time difference multiplied by some constant μ {\displaystyle \mu } , which is a real number, then the resulting stochastic process is said to have drift μ {\displaystyle \mu } . [84] [85] [86] Almost surely, a sample path of a Wiener process is continuous everywhere but nowhere differentiable. It can be considered a continuous version of the simple rando

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

If the mean of the increment for any two points in time is equal to the time difference multiplied by some constant , then the resulting stochastic process is said to have drift

e space can be n {\displaystyle n} -dimensional Euclidean space. [71] [79] [83] If the mean of any increment is zero, then the resulting Wiener or Brownian motion process is said to have zero drift. <span>If the mean of the increment for any two points in time is equal to the time difference multiplied by some constant μ {\displaystyle \mu } , which is a real number, then the resulting stochastic process is said to have drift μ {\displaystyle \mu } . [84] [85] [86] Almost surely, a sample path of a Wiener process is continuous everywhere but nowhere differentiable. It can be considered a continuous version of the simple rando

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

If the mean of the increment for any two points in time is equal to the time difference multiplied by some constant , then the resulting stochastic process is said to have drift

e space can be n {\displaystyle n} -dimensional Euclidean space. [71] [79] [83] If the mean of any increment is zero, then the resulting Wiener or Brownian motion process is said to have zero drift. <span>If the mean of the increment for any two points in time is equal to the time difference multiplied by some constant μ {\displaystyle \mu } , which is a real number, then the resulting stochastic process is said to have drift μ {\displaystyle \mu } . [84] [85] [86] Almost surely, a sample path of a Wiener process is continuous everywhere but nowhere differentiable. It can be considered a continuous version of the simple rando

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

Almost surely, a sample path of a Wiener process is continuous everywhere but nowhere differentiable. It can be considered a continuous version of the simple random walk.

stant μ {\displaystyle \mu } , which is a real number, then the resulting stochastic process is said to have drift μ {\displaystyle \mu } . [84] [85] [86] <span>Almost surely, a sample path of a Wiener process is continuous everywhere but nowhere differentiable. It can be considered a continuous version of the simple random walk. [49] [85] The process arises as the mathematical limit of other stochastic processes such as certain random walks rescaled, [87] [88] which is the subject of Donsker's theorem or inva

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

Almost surely, a sample path of a Wiener process is continuous everywhere but nowhere differentiable. It can be considered a continuous version of the simple random walk.

stant μ {\displaystyle \mu } , which is a real number, then the resulting stochastic process is said to have drift μ {\displaystyle \mu } . [84] [85] [86] <span>Almost surely, a sample path of a Wiener process is continuous everywhere but nowhere differentiable. It can be considered a continuous version of the simple random walk. [49] [85] The process arises as the mathematical limit of other stochastic processes such as certain random walks rescaled, [87] [88] which is the subject of Donsker's theorem or inva

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

Almost surely, a sample path of a Wiener process is continuous everywhere but nowhere differentiable. It can be considered a continuous version of the simple random walk.

stant μ {\displaystyle \mu } , which is a real number, then the resulting stochastic process is said to have drift μ {\displaystyle \mu } . [84] [85] [86] <span>Almost surely, a sample path of a Wiener process is continuous everywhere but nowhere differentiable. It can be considered a continuous version of the simple random walk. [49] [85] The process arises as the mathematical limit of other stochastic processes such as certain random walks rescaled, [87] [88] which is the subject of Donsker's theorem or inva

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

If a Poisson process is defined with a single positive constant, then the process is called a homogeneous Poisson process.

arameter. This process has the natural numbers as its state space and the non-negative numbers as its index set. This process is also called the Poisson counting process, since it can be interpreted as an example of a counting process. [99] <span>If a Poisson process is defined with a single positive constant, then the process is called a homogeneous Poisson process. [99] [101] The homogeneous Poisson process (in continuous time) is a member of important classes of stochastic processes such as Markov processes and Lévy processes. [49] The homogen

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

If a Poisson process is defined with a single positive constant, then the process is called a homogeneous Poisson process.

arameter. This process has the natural numbers as its state space and the non-negative numbers as its index set. This process is also called the Poisson counting process, since it can be interpreted as an example of a counting process. [99] <span>If a Poisson process is defined with a single positive constant, then the process is called a homogeneous Poisson process. [99] [101] The homogeneous Poisson process (in continuous time) is a member of important classes of stochastic processes such as Markov processes and Lévy processes. [49] The homogen

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

The homogeneous Poisson process can be defined and generalized in different ways. It can be defined such that its index set is the real line, and this stochastic process is also called the stationary Poisson process.

constant, then the process is called a homogeneous Poisson process. [99] [101] The homogeneous Poisson process (in continuous time) is a member of important classes of stochastic processes such as Markov processes and Lévy processes. [49] <span>The homogeneous Poisson process can be defined and generalized in different ways. It can be defined such that its index set is the real line, and this stochastic process is also called the stationary Poisson process. [102] [103] If the parameter constant of the Poisson process is replaced with some non-negative integrable function of t {\displaystyle t} ,

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

The homogeneous Poisson process can be defined and generalized in different ways. It can be defined such that its index set is the real line, and this stochastic process is also called the stationary Poisson process.

constant, then the process is called a homogeneous Poisson process. [99] [101] The homogeneous Poisson process (in continuous time) is a member of important classes of stochastic processes such as Markov processes and Lévy processes. [49] <span>The homogeneous Poisson process can be defined and generalized in different ways. It can be defined such that its index set is the real line, and this stochastic process is also called the stationary Poisson process. [102] [103] If the parameter constant of the Poisson process is replaced with some non-negative integrable function of t {\displaystyle t} ,

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

If the parameter constant of the Poisson process is replaced with some non-negative integrable function of , the resulting process is called an inhomogeneous or nonhomogeneous Poisson process, where the average density of points of the process is no longer constant. <

sses. [49] The homogeneous Poisson process can be defined and generalized in different ways. It can be defined such that its index set is the real line, and this stochastic process is also called the stationary Poisson process. [102] [103] <span>If the parameter constant of the Poisson process is replaced with some non-negative integrable function of t {\displaystyle t} , the resulting process is called an inhomogeneous or nonhomogeneous Poisson process, where the average density of points of the process is no longer constant. [104] Serving as a fundamental process in queueing theory, the Poisson process is an important process for mathematical models, where it finds applications for models of events randoml

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

If the parameter constant of the Poisson process is replaced with some non-negative integrable function of , the resulting process is called an inhomogeneous or nonhomogeneous Poisson process, where the average density of points of the process is no longer constant.

sses. [49] The homogeneous Poisson process can be defined and generalized in different ways. It can be defined such that its index set is the real line, and this stochastic process is also called the stationary Poisson process. [102] [103] <span>If the parameter constant of the Poisson process is replaced with some non-negative integrable function of t {\displaystyle t} , the resulting process is called an inhomogeneous or nonhomogeneous Poisson process, where the average density of points of the process is no longer constant. [104] Serving as a fundamental process in queueing theory, the Poisson process is an important process for mathematical models, where it finds applications for models of events randoml

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

body> If the parameter constant of the Poisson process is replaced with some non-negative integrable function of , the resulting process is called an inhomogeneous or nonhomogeneous Poisson process, where the average density of points of the process is no longer constant. <body><html>

sses. [49] The homogeneous Poisson process can be defined and generalized in different ways. It can be defined such that its index set is the real line, and this stochastic process is also called the stationary Poisson process. [102] [103] <span>If the parameter constant of the Poisson process is replaced with some non-negative integrable function of t {\displaystyle t} , the resulting process is called an inhomogeneous or nonhomogeneous Poisson process, where the average density of points of the process is no longer constant. [104] Serving as a fundamental process in queueing theory, the Poisson process is an important process for mathematical models, where it finds applications for models of events randoml

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

Note that P is a different function for each different probability distri- bution

status | not read | reprioritisations | ||
---|---|---|---|---|

last reprioritisation on | suggested re-reading day | |||

started reading on | finished reading on |

Infinite-dimensional vector spaces arise naturally in mathematical analysis, as function spaces, whose vectors are functions. These vector spaces are generally endowed with additional structure, which may be a topology, allowing the consideration of issues of proximity and continuity. Among these topologies, those that are defined by a norm or inner product are more commonly used, as having a notion of distance between two vectors. This is particularly the

roperties, which in some cases can be visualized as arrows. Vector spaces are the subject of linear algebra and are well characterized by their dimension, which, roughly speaking, specifies the number of independent directions in the space. <span>Infinite-dimensional vector spaces arise naturally in mathematical analysis, as function spaces, whose vectors are functions. These vector spaces are generally endowed with additional structure, which may be a topology, allowing the consideration of issues of proximity and continuity. Among these topologies, those that are defined by a norm or inner product are more commonly used, as having a notion of distance between two vectors. This is particularly the case of Banach spaces and Hilbert spaces, which are fundamental in mathematical analysis. Historically, the first ideas leading to vector spaces can be traced back as far as the 17th century's analytic geometry, matrices, systems of linear equations, and Euclidean vectors.

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

Functional spaces are generally endowed with additional structure than vector spaces, which may be a topology, allowing the consideration of issues of proximity and continuity.

roperties, which in some cases can be visualized as arrows. Vector spaces are the subject of linear algebra and are well characterized by their dimension, which, roughly speaking, specifies the number of independent directions in the space. <span>Infinite-dimensional vector spaces arise naturally in mathematical analysis, as function spaces, whose vectors are functions. These vector spaces are generally endowed with additional structure, which may be a topology, allowing the consideration of issues of proximity and continuity. Among these topologies, those that are defined by a norm or inner product are more commonly used, as having a notion of distance between two vectors. This is particularly the case of Banach spaces and Hilbert spaces, which are fundamental in mathematical analysis. Historically, the first ideas leading to vector spaces can be traced back as far as the 17th century's analytic geometry, matrices, systems of linear equations, and Euclidean vectors.

status | not read | reprioritisations | ||
---|---|---|---|---|

last reprioritisation on | suggested re-reading day | |||

started reading on | finished reading on |

l analysis, as function spaces, whose vectors are functions. These vector spaces are generally endowed with additional structure, which may be a topology, allowing the consideration of issues of proximity and continuity. <span>Among these topologies, those that are defined by a norm or inner product are more commonly used, as having a notion of distance between two vectors. This is particularly the case of Banach spaces and Hilbert spaces, which are fundamental in mathematical analysis. <span><body><html>

roperties, which in some cases can be visualized as arrows. Vector spaces are the subject of linear algebra and are well characterized by their dimension, which, roughly speaking, specifies the number of independent directions in the space. <span>Infinite-dimensional vector spaces arise naturally in mathematical analysis, as function spaces, whose vectors are functions. These vector spaces are generally endowed with additional structure, which may be a topology, allowing the consideration of issues of proximity and continuity. Among these topologies, those that are defined by a norm or inner product are more commonly used, as having a notion of distance between two vectors. This is particularly the case of Banach spaces and Hilbert spaces, which are fundamental in mathematical analysis. Historically, the first ideas leading to vector spaces can be traced back as far as the 17th century's analytic geometry, matrices, systems of linear equations, and Euclidean vectors.

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

Among the topologies of vector spaces, those that are defined by a norm or inner product are more commonly used, as having a notion of distance between two vectors.

roperties, which in some cases can be visualized as arrows. Vector spaces are the subject of linear algebra and are well characterized by their dimension, which, roughly speaking, specifies the number of independent directions in the space. <span>Infinite-dimensional vector spaces arise naturally in mathematical analysis, as function spaces, whose vectors are functions. These vector spaces are generally endowed with additional structure, which may be a topology, allowing the consideration of issues of proximity and continuity. Among these topologies, those that are defined by a norm or inner product are more commonly used, as having a notion of distance between two vectors. This is particularly the case of Banach spaces and Hilbert spaces, which are fundamental in mathematical analysis. Historically, the first ideas leading to vector spaces can be traced back as far as the 17th century's analytic geometry, matrices, systems of linear equations, and Euclidean vectors.

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

Among the topologies of vector spaces, those that are defined by a norm or inner product are more commonly used, as having a notion of distance between two vectors.

roperties, which in some cases can be visualized as arrows. Vector spaces are the subject of linear algebra and are well characterized by their dimension, which, roughly speaking, specifies the number of independent directions in the space. <span>Infinite-dimensional vector spaces arise naturally in mathematical analysis, as function spaces, whose vectors are functions. These vector spaces are generally endowed with additional structure, which may be a topology, allowing the consideration of issues of proximity and continuity. Among these topologies, those that are defined by a norm or inner product are more commonly used, as having a notion of distance between two vectors. This is particularly the case of Banach spaces and Hilbert spaces, which are fundamental in mathematical analysis. Historically, the first ideas leading to vector spaces can be traced back as far as the 17th century's analytic geometry, matrices, systems of linear equations, and Euclidean vectors.

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

Functional spaces are generally endowed with additional structure than vector spaces, which may be a topology, allowing the consideration of issues of proximity and continuity.

roperties, which in some cases can be visualized as arrows. Vector spaces are the subject of linear algebra and are well characterized by their dimension, which, roughly speaking, specifies the number of independent directions in the space. <span>Infinite-dimensional vector spaces arise naturally in mathematical analysis, as function spaces, whose vectors are functions. These vector spaces are generally endowed with additional structure, which may be a topology, allowing the consideration of issues of proximity and continuity. Among these topologies, those that are defined by a norm or inner product are more commonly used, as having a notion of distance between two vectors. This is particularly the case of Banach spaces and Hilbert spaces, which are fundamental in mathematical analysis. Historically, the first ideas leading to vector spaces can be traced back as far as the 17th century's analytic geometry, matrices, systems of linear equations, and Euclidean vectors.

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

At the stationary point there must exist a parameter λ such that ∇f + λ∇g =0 because ∇f and ∇g are both perpendicular to the equality constraint

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

In optimization with inequality constraint, the sign of the Lagrange multiplier is crucial, because the function f(x) will only be at a maximum if its gradient is oriented away from the region g(x) > 0

status | not read | reprioritisations | ||
---|---|---|---|---|

last reprioritisation on | suggested re-reading day | |||

started reading on | finished reading on |

mple above reduces to this one if the arrows are represented by the pair of Cartesian coordinates of their end points. Definition[edit source] In this article, vectors are represented in boldface to distinguish them from scalars. [nb 1] <span>A vector space over a field F is a set V together with two operations that satisfy the eight axioms listed below. The first operation, called vector addition or simply addition + : V × V → V, takes any two vectors v and w and assigns to them a third vector which is commonly written

status | not read | reprioritisations | ||
---|---|---|---|---|

last reprioritisation on | suggested re-reading day | |||

started reading on | finished reading on |

A vector space over a field F is a set V together with two operations (the vector addition and scalar multiplication) that satisfy certain axioms. Elements of V are commonly called vectors. Elements of F are commonly called scalars.

mple above reduces to this one if the arrows are represented by the pair of Cartesian coordinates of their end points. Definition[edit source] In this article, vectors are represented in boldface to distinguish them from scalars. [nb 1] <span>A vector space over a field F is a set V together with two operations that satisfy the eight axioms listed below. The first operation, called vector addition or simply addition + : V × V → V, takes any two vectors v and w and assigns to them a third vector which is commonly written

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

A vector space over a field F is a set V together with two operations (the vector addition and scalar multiplication) that satisfy certain axioms.

mple above reduces to this one if the arrows are represented by the pair of Cartesian coordinates of their end points. Definition[edit source] In this article, vectors are represented in boldface to distinguish them from scalars. [nb 1] <span>A vector space over a field F is a set V together with two operations that satisfy the eight axioms listed below. The first operation, called vector addition or simply addition + : V × V → V, takes any two vectors v and w and assigns to them a third vector which is commonly written

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

A vector space over a field F is a set V together with two operations (the vector addition and scalar multiplication) that satisfy certain axioms. Elements of V are commonly called vectors. Elements of F are commonly called scalars.

mple above reduces to this one if the arrows are represented by the pair of Cartesian coordinates of their end points. Definition[edit source] In this article, vectors are represented in boldface to distinguish them from scalars. [nb 1] <span>A vector space over a field F is a set V together with two operations that satisfy the eight axioms listed below. The first operation, called vector addition or simply addition + : V × V → V, takes any two vectors v and w and assigns to them a third vector which is commonly written

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

In mathematics, an eigenfunction of a linear operator D defined on some function space is any non-zero function f in that space that for some scalar eigenvalue λ.

ected from Eigenfunction expansion) Jump to: navigation, search [imagelink] This solution of the vibrating drum problem is, at any point in time, an eigenfunction of the Laplace operator on a disk. <span>In mathematics, an eigenfunction of a linear operator D defined on some function space is any non-zero function f in that space that, when acted upon by D, is only multiplied by some scaling factor called an eigenvalue. As an equation, this condition can be written as D f = λ f {\displaystyle Df=\lambda f} for some scalar eigenvalue λ. [1] [2] [3] The solutions to this equation may also be subject to boundary conditions that limit the allowable eigenvalues and eigenfunctions. An eigenfunction is a type of eigenvect

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

A topological space is an ordered pair (X, τ), where X is a set and τ is a collection of subsets of X, satisfying the following axioms: [7] The empty set and X itself belong to τ. Any (finite or infinite) union of members of τ still belongs to τ. The intersection of any finite number of members of τ still belongs to τ.

three-point set {1,2,3}. The bottom-left example is not a topology because the union of {2} and {3} [i.e. {2,3}] is missing; the bottom-right example is not a topology because the intersection of {1,2} and {2,3} [i.e. {2}], is missing. <span>A topological space is an ordered pair (X, τ), where X is a set and τ is a collection of subsets of X, satisfying the following axioms: [7] The empty set and X itself belong to τ. Any (finite or infinite) union of members of τ still belongs to τ. The intersection of any finite number of members of τ still belongs to τ. The elements of τ are called open sets and the collection τ is called a topology on X. Examples[edit source] Given X = {1, 2, 3, 4}, the collection τ = {{}, {1, 2, 3, 4}} of only the two subsets of X required by the axioms forms a topology of X, the trivial topology (

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

Random walks are stochastic processes that are usually defined as sums of iid random variables or random vectors in Euclidean space, so they are processes that change in discrete time.

one, while the value of a tail is zero. [61] In other words, a Bernoulli process is a sequence of iid Bernoulli random variables, [62] where each coin flip is a Bernoulli trial. [63] Random walk[edit source] Main article: Random walk <span>Random walks are stochastic processes that are usually defined as sums of iid random variables or random vectors in Euclidean space, so they are processes that change in discrete time. [64] [65] [66] [67] [68] But some also use the term to refer to processes that change in continuous time, [69] particularly the Wiener process used in finance, which has led to some c

status | not read | reprioritisations | ||
---|---|---|---|---|

last reprioritisation on | suggested re-reading day | |||

started reading on | finished reading on |

status | not read | reprioritisations | ||
---|---|---|---|---|

last reprioritisation on | suggested re-reading day | |||

started reading on | finished reading on |

status | not read | reprioritisations | ||
---|---|---|---|---|

last reprioritisation on | suggested re-reading day | |||

started reading on | finished reading on |

status | not read | reprioritisations | ||
---|---|---|---|---|

last reprioritisation on | suggested re-reading day | |||

started reading on | finished reading on |

status | not read | reprioritisations | ||
---|---|---|---|---|

last reprioritisation on | suggested re-reading day | |||

started reading on | finished reading on |

status | not read | reprioritisations | ||
---|---|---|---|---|

last reprioritisation on | suggested re-reading day | |||

started reading on | finished reading on |

status | not read | reprioritisations | ||
---|---|---|---|---|

last reprioritisation on | suggested re-reading day | |||

started reading on | finished reading on |

status | not read | reprioritisations | ||
---|---|---|---|---|

last reprioritisation on | suggested re-reading day | |||

started reading on | finished reading on |

status | not read | reprioritisations | ||
---|---|---|---|---|

last reprioritisation on | suggested re-reading day | |||

started reading on | finished reading on |

status | not read | reprioritisations | ||
---|---|---|---|---|

last reprioritisation on | suggested re-reading day | |||

started reading on | finished reading on |

status | not read | reprioritisations | ||
---|---|---|---|---|

last reprioritisation on | suggested re-reading day | |||

started reading on | finished reading on |

status | not read | reprioritisations | ||
---|---|---|---|---|

last reprioritisation on | suggested re-reading day | |||

started reading on | finished reading on |

status | not read | reprioritisations | ||
---|---|---|---|---|

last reprioritisation on | suggested re-reading day | |||

started reading on | finished reading on |

status | not read | reprioritisations | ||
---|---|---|---|---|

last reprioritisation on | suggested re-reading day | |||

started reading on | finished reading on |