Do you want BuboFlash to help you learning these things? Click here to log in or create user.

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

is a mathematical model of a financial market containing derivative investment instruments. From the partial differential equation in the model, known as the Black–Scholes equation, one can deduce the Black–Scholes formula, which gives <span>a theoretical estimate of the price of European-style options and shows that the option has a unique price regardless of the risk of the security and its expected return (instead replacing the security's expected return with the risk-neutral rate)

Black–Scholes model - Wikipedia Black–Scholes model From Wikipedia, the free encyclopedia (Redirected from Black–Scholes) Jump to: navigation, search The Black–Scholes /ˌblæk ˈʃoʊlz/ [1] or Black–Scholes–Merton model is a mathematical model of a financial market containing derivative investment instruments. From the partial differential equation in the model, known as the Black–Scholes equation, one can deduce the Black–Scholes formula, which gives a theoretical estimate of the price of European-style options and shows that the option has a unique price regardless of the risk of the security and its expected return (instead replacing the security's expected return with the risk-neutral rate). The formula led to a boom in options trading and provided mathematical legitimacy to the activities of the Chicago Board Options Exchange and other options markets around the world. [2]

status | not read | reprioritisations | ||
---|---|---|---|---|

last reprioritisation on | reading queue position [%] | |||

started reading on | finished reading on |

st of references, but its sources remain unclear because it has insufficient inline citations. Please help to improve this article by introducing more precise citations. (April 2016) (Learn how and when to remove this template message) <span>In many fields of mathematics, morphism refers to a structure-preserving map from one mathematical structure to another. The notion of morphism recurs in much of contemporary mathematics. In set theory, morphisms are functions; in linear algebra, linear transformations; in group theory, group homomorphisms; in topology, continuous functions, and so on. In category theory, morphism is a broadly similar idea, but somewhat more abstract: the mathematical objects involved need not be sets, and the relationship between them may be someth

status | not read | reprioritisations | ||
---|---|---|---|---|

last reprioritisation on | reading queue position [%] | |||

started reading on | finished reading on |

In many fields of mathematics, morphism refers to a structure-preserving map from one mathematical structure to another. The notion of morphism recurs in much of contemporary mathematics. In set theory, morphisms are functions; in linear algebra, linear transformations; in group theory, group homomorphism

st of references, but its sources remain unclear because it has insufficient inline citations. Please help to improve this article by introducing more precise citations. (April 2016) (Learn how and when to remove this template message) <span>In many fields of mathematics, morphism refers to a structure-preserving map from one mathematical structure to another. The notion of morphism recurs in much of contemporary mathematics. In set theory, morphisms are functions; in linear algebra, linear transformations; in group theory, group homomorphisms; in topology, continuous functions, and so on. In category theory, morphism is a broadly similar idea, but somewhat more abstract: the mathematical objects involved need not be sets, and the relationship between them may be someth

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

In many fields of mathematics, morphism refers to a structure-preserving map from one mathematical structure to another.

st of references, but its sources remain unclear because it has insufficient inline citations. Please help to improve this article by introducing more precise citations. (April 2016) (Learn how and when to remove this template message) <span>In many fields of mathematics, morphism refers to a structure-preserving map from one mathematical structure to another. The notion of morphism recurs in much of contemporary mathematics. In set theory, morphisms are functions; in linear algebra, linear transformations; in group theory, group homomorphisms; in topology, continuous functions, and so on. In category theory, morphism is a broadly similar idea, but somewhat more abstract: the mathematical objects involved need not be sets, and the relationship between them may be someth

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

In many fields of mathematics, morphism refers to a structure-preserving map from one mathematical structure to another.

st of references, but its sources remain unclear because it has insufficient inline citations. Please help to improve this article by introducing more precise citations. (April 2016) (Learn how and when to remove this template message) <span>In many fields of mathematics, morphism refers to a structure-preserving map from one mathematical structure to another. The notion of morphism recurs in much of contemporary mathematics. In set theory, morphisms are functions; in linear algebra, linear transformations; in group theory, group homomorphisms; in topology, continuous functions, and so on. In category theory, morphism is a broadly similar idea, but somewhat more abstract: the mathematical objects involved need not be sets, and the relationship between them may be someth

status | not read | reprioritisations | ||
---|---|---|---|---|

last reprioritisation on | reading queue position [%] | |||

started reading on | finished reading on |

ogy (disambiguation). For a topology of a topos or category, see Lawvere–Tierney topology and Grothendieck topology. [imagelink] Möbius strips, which have only one surface and one edge, are a kind of object studied in topology. <span>In mathematics, topology (from the Greek τόπος, place, and λόγος, study) is concerned with the properties of space that are preserved under continuous deformations, such as stretching, crumpling and bending, but not tearing or gluing. This can be studied by considering a collection of subsets, called open sets, that satisfy certain properties, turning the given set into what is known as a topological space. Important

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

In mathematics, topology (from the Greek τόπος, place, and λόγος, study) is concerned with the properties of space that are preserved under continuous deformations, such as stretching, crumpling and bending, but not tearing or gluing.

ogy (disambiguation). For a topology of a topos or category, see Lawvere–Tierney topology and Grothendieck topology. [imagelink] Möbius strips, which have only one surface and one edge, are a kind of object studied in topology. <span>In mathematics, topology (from the Greek τόπος, place, and λόγος, study) is concerned with the properties of space that are preserved under continuous deformations, such as stretching, crumpling and bending, but not tearing or gluing. This can be studied by considering a collection of subsets, called open sets, that satisfy certain properties, turning the given set into what is known as a topological space. Important

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

In mathematics, topology (from the Greek τόπος, place, and λόγος, study) is concerned with the properties of space that are preserved under continuous deformations, such as stretching, crumpling and bending, but not tearing or gluing.

ogy (disambiguation). For a topology of a topos or category, see Lawvere–Tierney topology and Grothendieck topology. [imagelink] Möbius strips, which have only one surface and one edge, are a kind of object studied in topology. <span>In mathematics, topology (from the Greek τόπος, place, and λόγος, study) is concerned with the properties of space that are preserved under continuous deformations, such as stretching, crumpling and bending, but not tearing or gluing. This can be studied by considering a collection of subsets, called open sets, that satisfy certain properties, turning the given set into what is known as a topological space. Important

status | not read | reprioritisations | ||
---|---|---|---|---|

last reprioritisation on | reading queue position [%] | |||

started reading on | finished reading on |

ositive length or size to each vector in a vector space—save for the zero vector, which is assigned a length of zero. A seminorm, on the other hand, is allowed to assign zero length to some non-zero vectors (in addition to the zero vector). <span>A norm must also satisfy certain properties pertaining to scalability and additivity which are given in the formal definition below. A simple example is two dimensional Euclidean space R 2 equipped with the "Euclidean norm" (see below) Elements in this vector space (e.g., (3, 7)) are usually drawn as arr

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

A norm must also satisfy certain properties pertaining to scalability and additivity which are given in the formal definition below.

ositive length or size to each vector in a vector space—save for the zero vector, which is assigned a length of zero. A seminorm, on the other hand, is allowed to assign zero length to some non-zero vectors (in addition to the zero vector). <span>A norm must also satisfy certain properties pertaining to scalability and additivity which are given in the formal definition below. A simple example is two dimensional Euclidean space R 2 equipped with the "Euclidean norm" (see below) Elements in this vector space (e.g., (3, 7)) are usually drawn as arr

status | not read | reprioritisations | ||
---|---|---|---|---|

last reprioritisation on | reading queue position [%] | |||

started reading on | finished reading on |

x. In complex matrices, symmetry is often replaced by the concept of Hermitian matrices, which satisfy A ∗ = A, where the star or asterisk denotes the conjugate transpose of the matrix, that is, the transpose of the complex conjugate of A. <span>By the spectral theorem, real symmetric matrices and complex Hermitian matrices have an eigenbasis; that is, every vector is expressible as a linear combination of eigenvectors. In both cases, all eigenvalues are real. [29] This theorem can be generalized to infinite-dimensional situations related to matrices with infinitely many rows and columns, see below. Invertible matrix and its inverse[edit s

status | not read | reprioritisations | ||
---|---|---|---|---|

last reprioritisation on | reading queue position [%] | |||

started reading on | finished reading on |

By the spectral theorem, real symmetric matrices and complex Hermitian matrices have an eigenbasis; that is, every vector is expressible as a linear combination of eigenvectors. In both cases, all eigenvalues are real.

x. In complex matrices, symmetry is often replaced by the concept of Hermitian matrices, which satisfy A ∗ = A, where the star or asterisk denotes the conjugate transpose of the matrix, that is, the transpose of the complex conjugate of A. <span>By the spectral theorem, real symmetric matrices and complex Hermitian matrices have an eigenbasis; that is, every vector is expressible as a linear combination of eigenvectors. In both cases, all eigenvalues are real. [29] This theorem can be generalized to infinite-dimensional situations related to matrices with infinitely many rows and columns, see below. Invertible matrix and its inverse[edit s

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

By the spectral theorem, real symmetric matrices and complex Hermitian matrices have an eigenbasis

x. In complex matrices, symmetry is often replaced by the concept of Hermitian matrices, which satisfy A ∗ = A, where the star or asterisk denotes the conjugate transpose of the matrix, that is, the transpose of the complex conjugate of A. <span>By the spectral theorem, real symmetric matrices and complex Hermitian matrices have an eigenbasis; that is, every vector is expressible as a linear combination of eigenvectors. In both cases, all eigenvalues are real. [29] This theorem can be generalized to infinite-dimensional situations related to matrices with infinitely many rows and columns, see below. Invertible matrix and its inverse[edit s

status | not read | reprioritisations | ||
---|---|---|---|---|

last reprioritisation on | reading queue position [%] | |||

started reading on | finished reading on |

analysis. For field theory, see Field norm. For ideals, see Ideal norm. For group theory, see Norm (group). For norms in descriptive set theory, see prewellordering. In linear algebra, functional analysis, and related areas of mathematics, <span>a norm is a function that assigns a strictly positive length or size to each vector in a vector space—save for the zero vector, which is assigned a length of zero. A seminorm, on the other hand, is allowed to assign zero length to some non-zero vectors (in addition to the zero vector).

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

a norm is a function that assigns a strictly positive length or size to each vector in a vector space

analysis. For field theory, see Field norm. For ideals, see Ideal norm. For group theory, see Norm (group). For norms in descriptive set theory, see prewellordering. In linear algebra, functional analysis, and related areas of mathematics, <span>a norm is a function that assigns a strictly positive length or size to each vector in a vector space—save for the zero vector, which is assigned a length of zero. A seminorm, on the other hand, is allowed to assign zero length to some non-zero vectors (in addition to the zero vector).

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

a norm is a function that assigns a strictly positive length or size to each vector (bar zero vector) in a vector space

analysis. For field theory, see Field norm. For ideals, see Ideal norm. For group theory, see Norm (group). For norms in descriptive set theory, see prewellordering. In linear algebra, functional analysis, and related areas of mathematics, <span>a norm is a function that assigns a strictly positive length or size to each vector in a vector space—save for the zero vector, which is assigned a length of zero. A seminorm, on the other hand, is allowed to assign zero length to some non-zero vectors (in addition to the zero vector).

status | not read | reprioritisations | ||
---|---|---|---|---|

last reprioritisation on | reading queue position [%] | |||

started reading on | finished reading on |

tml>Linear differential equation - Wikipedia Linear differential equation From Wikipedia, the free encyclopedia Jump to: navigation, search In mathematics, a linear differential equation is a differential equation that is defined by a linear polynomial in the unknown function and its derivatives, that is an equation of the form a 0 ( x ) y +

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

In mathematics, a linear differential equation is a differential equation that is defined by a linear polynomial in the unknown function and its derivatives

tml>Linear differential equation - Wikipedia Linear differential equation From Wikipedia, the free encyclopedia Jump to: navigation, search In mathematics, a linear differential equation is a differential equation that is defined by a linear polynomial in the unknown function and its derivatives, that is an equation of the form a 0 ( x ) y +

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

In mathematics, a linear differential equation is a differential equation that is defined by a linear polynomial in the unknown function and its derivatives

tml>Linear differential equation - Wikipedia Linear differential equation From Wikipedia, the free encyclopedia Jump to: navigation, search In mathematics, a linear differential equation is a differential equation that is defined by a linear polynomial in the unknown function and its derivatives, that is an equation of the form a 0 ( x ) y +

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

In mathematics, topology (from the Greek τόπος, place, and λόγος, study) is concerned with the properties of space that are preserved under continuous deformations, such as stretching, crumpling and bending, but not tearing or gluing.

ogy (disambiguation). For a topology of a topos or category, see Lawvere–Tierney topology and Grothendieck topology. [imagelink] Möbius strips, which have only one surface and one edge, are a kind of object studied in topology. <span>In mathematics, topology (from the Greek τόπος, place, and λόγος, study) is concerned with the properties of space that are preserved under continuous deformations, such as stretching, crumpling and bending, but not tearing or gluing. This can be studied by considering a collection of subsets, called open sets, that satisfy certain properties, turning the given set into what is known as a topological space. Important

status | not read | reprioritisations | ||
---|---|---|---|---|

last reprioritisation on | reading queue position [%] | |||

started reading on | finished reading on |

c, d] is Lebesgue measurable, and its Lebesgue measure is (b − a)(d − c), the area of the corresponding rectangle. Moreover, every Borel set is Lebesgue measurable. However, there are Lebesgue measurable sets which are not Borel sets. [3] [4] <span>Any countable set of real numbers has Lebesgue measure 0. In particular, the Lebesgue measure of the set of rational numbers is 0, although the set is dense in R. The Cantor set is an example of an uncountable set that has Lebesgue measure zer

status | not read | reprioritisations | ||
---|---|---|---|---|

last reprioritisation on | reading queue position [%] | |||

started reading on | finished reading on |

, because E {\displaystyle E} is a subset of the union of the intervals, and so the intervals may include points which are not in E {\displaystyle E} . <span>The Lebesgue outer measure emerges as the greatest lower bound (infimum) of the lengths from among all possible such sets. Intuitively, it is the total length of those interval sets which fit E {\displaystyle E} most tightly and do not overlap. That characterize

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

The Lebesgue outer measure of a set E emerges as the greatest lower bound (infimum) of the lengths from among all possible such sets (unions of open intervals that include E).

, because E {\displaystyle E} is a subset of the union of the intervals, and so the intervals may include points which are not in E {\displaystyle E} . <span>The Lebesgue outer measure emerges as the greatest lower bound (infimum) of the lengths from among all possible such sets. Intuitively, it is the total length of those interval sets which fit E {\displaystyle E} most tightly and do not overlap. That characterize

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

The Lebesgue outer measure of a set E emerges as the greatest lower bound (infimum) of the lengths from among all possible such sets (unions of open intervals that include E).

, because E {\displaystyle E} is a subset of the union of the intervals, and so the intervals may include points which are not in E {\displaystyle E} . <span>The Lebesgue outer measure emerges as the greatest lower bound (infimum) of the lengths from among all possible such sets. Intuitively, it is the total length of those interval sets which fit E {\displaystyle E} most tightly and do not overlap. That characterize

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

The Lebesgue outer measure of a set E emerges as the greatest lower bound (infimum) of the lengths from among all possible such sets (unions of open intervals that include E).

, because E {\displaystyle E} is a subset of the union of the intervals, and so the intervals may include points which are not in E {\displaystyle E} . <span>The Lebesgue outer measure emerges as the greatest lower bound (infimum) of the lengths from among all possible such sets. Intuitively, it is the total length of those interval sets which fit E {\displaystyle E} most tightly and do not overlap. That characterize

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

Any countable set of real numbers has Lebesgue measure 0.

c, d] is Lebesgue measurable, and its Lebesgue measure is (b − a)(d − c), the area of the corresponding rectangle. Moreover, every Borel set is Lebesgue measurable. However, there are Lebesgue measurable sets which are not Borel sets. [3] [4] <span>Any countable set of real numbers has Lebesgue measure 0. In particular, the Lebesgue measure of the set of rational numbers is 0, although the set is dense in R. The Cantor set is an example of an uncountable set that has Lebesgue measure zer

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

status | not read | reprioritisations | ||
---|---|---|---|---|

last reprioritisation on | reading queue position [%] | |||

started reading on | finished reading on |

x i {\displaystyle \sum _{i=1}^{n}x_{i}} is not a norm because it may yield negative results. p-norm[edit source] Main article: L p space <span>Let p ≥ 1 be a real number. The p {\displaystyle p} -norm (also called ℓ p {\displaystyle \ell _{p}} -norm) of vectors x = ( x 1 , … , x n ) {\displaystyle \mathbf {x} =(x_{1},\ldots ,x_{n})} is ‖ x ‖ p := ( ∑ i = 1 n | x i | p ) 1 / p . {\displaystyle \left\|\mathbf {x} \right\|_{p}:={\bigg (}\sum _{i=1}^{n}\left|x_{i}\right|^{p}{\bigg )}^{1/p}.} For p = 1 we get the taxicab norm, for p = 2 we get the Euclidean norm, and as p approaches ∞ {\displaystyle \infty } the p-norm approa

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

Let p ≥ 1 be a real number. The -norm of vectors is

x i {\displaystyle \sum _{i=1}^{n}x_{i}} is not a norm because it may yield negative results. p-norm[edit source] Main article: L p space <span>Let p ≥ 1 be a real number. The p {\displaystyle p} -norm (also called ℓ p {\displaystyle \ell _{p}} -norm) of vectors x = ( x 1 , … , x n ) {\displaystyle \mathbf {x} =(x_{1},\ldots ,x_{n})} is ‖ x ‖ p := ( ∑ i = 1 n | x i | p ) 1 / p . {\displaystyle \left\|\mathbf {x} \right\|_{p}:={\bigg (}\sum _{i=1}^{n}\left|x_{i}\right|^{p}{\bigg )}^{1/p}.} For p = 1 we get the taxicab norm, for p = 2 we get the Euclidean norm, and as p approaches ∞ {\displaystyle \infty } the p-norm approa

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

Let p ≥ 1 be a real number. The -norm of vectors is

x i {\displaystyle \sum _{i=1}^{n}x_{i}} is not a norm because it may yield negative results. p-norm[edit source] Main article: L p space <span>Let p ≥ 1 be a real number. The p {\displaystyle p} -norm (also called ℓ p {\displaystyle \ell _{p}} -norm) of vectors x = ( x 1 , … , x n ) {\displaystyle \mathbf {x} =(x_{1},\ldots ,x_{n})} is ‖ x ‖ p := ( ∑ i = 1 n | x i | p ) 1 / p . {\displaystyle \left\|\mathbf {x} \right\|_{p}:={\bigg (}\sum _{i=1}^{n}\left|x_{i}\right|^{p}{\bigg )}^{1/p}.} For p = 1 we get the taxicab norm, for p = 2 we get the Euclidean norm, and as p approaches ∞ {\displaystyle \infty } the p-norm approa