Edited, memorised or added to reading list

on 14-May-2018 (Mon)

Do you want BuboFlash to help you learning these things? Click here to log in or create user.

#functional-analysis
n mathematics, a function space is a set of functions between two fixed sets.

statusnot read reprioritisations
last reprioritisation on reading queue position [%]
started reading on finished reading on

Function space - Wikipedia
tional · Algebraic · Analytic · Smooth · Continuous · Measurable · Injective · Surjective · Bijective   Constructions   Restriction · Composition · λ · Inverse   Generalizations   Partial · Multivalued · Implicit v t e I<span>n mathematics, a function space is a set of functions between two fixed sets. Often, the domain and/or codomain will have additional structure which is inherited by the function space. For example, the set of functions from any set X into a vector space have a




Flashcard 1732726099212

Tags
#functional-analysis
Question
a [...] is a set of functions between two fixed sets.
Answer
function space


statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Parent (intermediate) annotation

Open it
n mathematics, a function space is a set of functions between two fixed sets.

Original toplevel document

Function space - Wikipedia
tional · Algebraic · Analytic · Smooth · Continuous · Measurable · Injective · Surjective · Bijective   Constructions   Restriction · Composition · λ · Inverse   Generalizations   Partial · Multivalued · Implicit v t e I<span>n mathematics, a function space is a set of functions between two fixed sets. Often, the domain and/or codomain will have additional structure which is inherited by the function space. For example, the set of functions from any set X into a vector space have a







#measure-theory
In mathematics and in particular measure theory, a measurable function is a function between two measurable spaces such that the preimage of any measurable set is measurable

statusnot read reprioritisations
last reprioritisation on reading queue position [%]
started reading on finished reading on

Measurable function - Wikipedia
Measurable function - Wikipedia Measurable function From Wikipedia, the free encyclopedia Jump to: navigation, search In mathematics and in particular measure theory, a measurable function is a function between two measurable spaces such that the preimage of any measurable set is measurable, analogously to the definition that a function between topological spaces is continuous if the preimage of each open set is open. In real analysis, measurable functions are used in the




Flashcard 1744183364876

Tags
#measure-theory
Question
measurable function is a function between [...] such that the preimage of any measurable set is measurable
Answer


statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Parent (intermediate) annotation

Open it
In mathematics and in particular measure theory, a measurable function is a function between two measurable spaces such that the preimage of any measurable set is measurable

Original toplevel document

Measurable function - Wikipedia
Measurable function - Wikipedia Measurable function From Wikipedia, the free encyclopedia Jump to: navigation, search In mathematics and in particular measure theory, a measurable function is a function between two measurable spaces such that the preimage of any measurable set is measurable, analogously to the definition that a function between topological spaces is continuous if the preimage of each open set is open. In real analysis, measurable functions are used in the







Flashcard 1744185724172

Tags
#measure-theory
Question
a measurable function is a function between two measurable spaces such that [...]
Answer
the preimage of any measurable set is measurable


statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Parent (intermediate) annotation

Open it
In mathematics and in particular measure theory, a measurable function is a function between two measurable spaces such that the preimage of any measurable set is measurable

Original toplevel document

Measurable function - Wikipedia
Measurable function - Wikipedia Measurable function From Wikipedia, the free encyclopedia Jump to: navigation, search In mathematics and in particular measure theory, a measurable function is a function between two measurable spaces such that the preimage of any measurable set is measurable, analogously to the definition that a function between topological spaces is continuous if the preimage of each open set is open. In real analysis, measurable functions are used in the







#functional-analysis
Often, the domain and/or codomain will have additional structure which is inherited by the function space. For example, the set of functions from any set X into a vector space have a natural vector space structure given by pointwise addition and scalar multiplication. In other scenarios, the function space might inherit a topological or metric structure, hence the name function space.

statusnot read reprioritisations
last reprioritisation on reading queue position [%]
started reading on finished reading on

Function space - Wikipedia
tive · Surjective · Bijective   Constructions   Restriction · Composition · λ · Inverse   Generalizations   Partial · Multivalued · Implicit v t e In mathematics, a function space is a set of functions between two fixed sets. <span>Often, the domain and/or codomain will have additional structure which is inherited by the function space. For example, the set of functions from any set X into a vector space have a natural vector space structure given by pointwise addition and scalar multiplication. In other scenarios, the function space might inherit a topological or metric structure, hence the name function space. Contents [hide] 1 In linear algebra 2 Examples 3 Functional analysis 4 Norm 5 Bibliography 6 See also 7 Footnotes In linear algebra[edit source] See also: Vector spac




#topology
topology is closed under finite intersections while sigma-algebra is closed under countable intersections

statusnot read reprioritisations
last reprioritisation on reading queue position [%]
started reading on finished reading on

measure theory - Difference between topology and sigma-algebra axioms. - Mathematics Stack Exchange
up vote 11 down vote favorite 6 One distinct difference between axioms of topology and sigma algebra is the asymmetry between union and intersection; meaning <span>topology is closed under finite intersections sigma-algebra closed under countable union. It is very clear mathematically but is there a way to think; so that we can define a geometric difference? In other words I want to have an intuitive idea in application of this object




Flashcard 1754626395404

Tags
#topology
Question
topology is closed under [...] intersections while sigma-algebra is closed under [...] intersections
Answer
finite, countable


statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Parent (intermediate) annotation

Open it
topology is closed under finite intersections while sigma-algebra is closed under countable intersections

Original toplevel document

measure theory - Difference between topology and sigma-algebra axioms. - Mathematics Stack Exchange
up vote 11 down vote favorite 6 One distinct difference between axioms of topology and sigma algebra is the asymmetry between union and intersection; meaning <span>topology is closed under finite intersections sigma-algebra closed under countable union. It is very clear mathematically but is there a way to think; so that we can define a geometric difference? In other words I want to have an intuitive idea in application of this object







Flashcard 2965737180428

[unknown IMAGE 2965735083276]
Tags
#has-images #mapping
Question
a bijective function is a [...] mapping of a set X to a set Y.
Answer


statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Parent (intermediate) annotation

Open it
a bijective function a one-to-one and onto (surjective) mapping of a set X to a set Y.

Original toplevel document

Bijection - Wikipedia
nction between the elements of two sets, where each element of one set is paired with exactly one element of the other set, and each element of the other set is paired with exactly one element of the first set. There are no unpaired elements. <span>In mathematical terms, a bijective function f: X → Y is a one-to-one (injective) and onto (surjective) mapping of a set X to a set Y. A bijection from the set X to the set Y has an inverse function from Y to X. If X and Y are finite sets, then the existence of a bijection means they have the same number of elements.







Flashcard 2965739539724

[unknown IMAGE 2965735083276]
Tags
#has-images #mapping
Question
a [...] function is a one-to-one and onto mapping of a set X to a set Y.
Answer
bijective


statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Parent (intermediate) annotation

Open it
a bijective function a one-to-one and onto (surjective) mapping of a set X to a set Y.

Original toplevel document

Bijection - Wikipedia
nction between the elements of two sets, where each element of one set is paired with exactly one element of the other set, and each element of the other set is paired with exactly one element of the first set. There are no unpaired elements. <span>In mathematical terms, a bijective function f: X → Y is a one-to-one (injective) and onto (surjective) mapping of a set X to a set Y. A bijection from the set X to the set Y has an inverse function from Y to X. If X and Y are finite sets, then the existence of a bijection means they have the same number of elements.







Flashcard 2965766802700

Tags
#linear-algebra
Question

Given two vector spaces V and W over a field F, a linear transformation \(T:V\to W\)

satisfies [...math representation...] for any vectors u,vV and a scalar aF.

Answer
\(T(u+v)=T(u)+T(v),\quad T(av)=aT(v)\)

operation preserving


statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Parent (intermediate) annotation

Open it
><head>Given two vector spaces V and W over a field F, a linear transformation (also called linear map, linear mapping or linear operator) is a map \(T:V\to W\) that is compatible with addition and scalar multiplication: \(T(u+v)=T(u)+T(v),\quad T(av)=aT(v)\) for any vectors u,v ∈ V and a scalar a ∈ F. <html>

Original toplevel document

Linear algebra - Wikipedia
to all vector spaces. Linear transformations[edit source] Main article: Linear map Similarly as in the theory of other algebraic structures, linear algebra studies mappings between vector spaces that preserve the vector-space structure. <span>Given two vector spaces V and W over a field F, a linear transformation (also called linear map, linear mapping or linear operator) is a map T : V → W {\displaystyle T:V\to W} that is compatible with addition and scalar multiplication: T ( u + v ) = T ( u ) + T ( v ) , T ( a v ) = a T ( v ) {\displaystyle T(u+v)=T(u)+T(v),\quad T(av)=aT(v)} for any vectors u,v ∈ V and a scalar a ∈ F. Additionally for any vectors u, v ∈ V and scalars a, b ∈ F: T ( a u + b v ) =







Flashcard 2965849902348

Tags
#git-flow
Question
The repository setup that we use and that works well with this branching model, is that with a [...].
Answer
central “truth” repo


statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Parent (intermediate) annotation

Open it
The repository setup that we use and that works well with this branching model, is that with a central “truth” repo.

Original toplevel document

A successful Git branching model » nvie.com
e development model. The model that I’m going to present here is essentially no more than a set of procedures that every team member has to follow in order to come to a managed software development process. Decentralized but centralized ¶ <span>The repository setup that we use and that works well with this branching model, is that with a central “truth” repo. Note that this repo is only considered to be the central one (since Git is a DVCS, there is no such thing as a central repo at a technical level). We will refer to this repo as origin







Flashcard 2965888961804

Tags
#best-practice #git
Question

don't commit anything that can be [...] .

Answer
regenerated from other committed files


statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill
Commit Often, Perfect Later, Publish Once—Git Best Practices
that there are legitimate reasons to do all of these. However, you should not attempt any of these things without understanding the potential negative effects of each and why they might be in a best practices “Don’t” list. DO NOT <span>commit anything that can be regenerated from other things that were committed. Things that can be regenerated include binaries, object files, jars, .class , flex/yacc generated code, etc. Really the only place there is room for disagreement about this







#probability-theory
Let \((\Omega ,{\mathcal {F}},P)\) be a probability space and \((E,{\mathcal {E}})\) a measurable space. Then an \((E,{\mathcal {E}})\)-valued random variable is a measurable function \(X\colon \Omega \to E\), which means that, for every subset \(B\in {\mathcal {E}}\), its preimage \(X^{-1}(B)\in {\mathcal {F}}\) where \(X^{-1}(B)=\{\omega :X(\omega )\in B\}\).[5] This definition enables us to measure any subset \(B\in {\mathcal {E}}\) in the target space by looking at its preimage, which by assumption is measurable.

statusnot read reprioritisations
last reprioritisation on reading queue position [%]
started reading on finished reading on

Random variable - Wikipedia
fined over any sets that can be derived either directly from continuous intervals of numbers or by a finite or countably infinite number of unions and/or intersections of such intervals. [2] The measure-theoretic definition is as follows. <span>Let ( Ω , F , P ) {\displaystyle (\Omega ,{\mathcal {F}},P)} be a probability space and ( E , E ) {\displaystyle (E,{\mathcal {E}})} a measurable space. Then an ( E , E ) {\displaystyle (E,{\mathcal {E}})} -valued random variable is a measurable function X : Ω → E {\displaystyle X\colon \Omega \to E} , which means that, for every subset B ∈ E {\displaystyle B\in {\mathcal {E}}} , its preimage X − 1 ( B ) ∈ F {\displaystyle X^{-1}(B)\in {\mathcal {F}}} where X − 1 ( B ) = { ω : X ( ω ) ∈ B } {\displaystyle X^{-1}(B)=\{\omega :X(\omega )\in B\}} . [5] This definition enables us to measure any subset B ∈ E {\displaystyle B\in {\mathcal {E}}} in the target space by looking at its preimage, which by assumption is measurable. In more intuitive terms, a member of Ω {\displaystyle \Omega } is a possible outcome, a member of




Flashcard 2965954497804

Tags
#PATH
Question

To show the list of kernels that I have on my system: [...command...]

Answer
$ jupyter kernelspec list


statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Parent (intermediate) annotation

Open it
here's the list of kernels that I have on my system: $ jupyter kernelspec list Available kernels : python2 . 7 / Users / jakevdp /. ipython / kernels / python2 . 7 python3 . 3 / Users / jakevdp /. ipython / kernels / python3 . 3 python3 . 4 / Users / jakevdp /. ip

Original toplevel document

Running Jupyter with multiple Python and IPython paths - Stack Overflow
know where to look for the associated executable: that is, it needs to know which path the python sits in. These paths are specified in jupyter's kernelspec , and it's possible for the user to adjust them to their desires. For example, <span>here's the list of kernels that I have on my system: $ jupyter kernelspec list Available kernels: python2.7 /Users/jakevdp/.ipython/kernels/python2.7 python3.3 /Users/jakevdp/.ipython/kernels/python3.3 python3.4 /Users/jakevdp/.ipython/kernels/python3.4 python3.5 /Users/jakevdp/.ipython/kernels/python3.5 python2 /Users/jakevdp/Library/Jupyter/kernels/python2 python3 /Users/jakevdp/Library/Jupyter/kernels/python3 Each of these is a directory containing some metadata that specifies the kernel name, the path to the executable, and other relevant info. You can adjust kernels manually, editing the metadata inside the directories listed above. The command to install a kernel can change depending on the kernel. IPython relies on the i







#real-analysis
The codomain of a function is some arbitrary super-set of image.

statusnot read reprioritisations
last reprioritisation on reading queue position [%]
started reading on finished reading on

Range (mathematics) - Wikipedia
to the codomain. In mathematics, and more specifically in naive set theory, the range of a function refers to either the codomain or the image of the function, depending upon usage. Modern usage almost always uses range to mean image. <span>The codomain of a function is some arbitrary super-set of image. In real analysis, it is the real numbers. In complex analysis, it is the complex numbers. The image of a function is the set of all outputs of the function. The image is always a subs




Flashcard 2965961051404

Tags
#real-analysis
Question
The [...] of a function is some arbitrary super-set of image.
Answer
codomain


statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Parent (intermediate) annotation

Open it
The codomain of a function is some arbitrary super-set of image.

Original toplevel document

Range (mathematics) - Wikipedia
to the codomain. In mathematics, and more specifically in naive set theory, the range of a function refers to either the codomain or the image of the function, depending upon usage. Modern usage almost always uses range to mean image. <span>The codomain of a function is some arbitrary super-set of image. In real analysis, it is the real numbers. In complex analysis, it is the complex numbers. The image of a function is the set of all outputs of the function. The image is always a subs







Flashcard 2965964983564

Tags
#speed-reading
Question

If you understand several basic principles of [...], you can eliminate inefficiencies and increase speed while improving retention.

Answer
the human visual system


statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Parent (intermediate) annotation

Open it
If you understand several basic principles of the human visual system, you can eliminate inefficiencies and increase speed while improving retention.

Original toplevel document

Scientific Speed Reading: How to Read 300% Faster in 20 Minutes | The Blog of Author Tim Ferriss
more than 3,000 words-per-minute (wpm), or 10 pages per minute. One page every 6 seconds. By comparison, the average reading speed in the US is 200-300 wpm (1/2 to 1 page per minute), with the top 1% of the population reading over 400 wpm… <span>If you understand several basic principles of the human visual system, you can eliminate inefficiencies and increase speed while improving retention. To perform the exercises in this post and see the results, you will need: a book of 200+ pages that can lay flat when open, a pen, and a timer (a stop watch with alarm or kitchen time







Flashcard 2965966556428

Tags
#speed-reading
Question
You must minimize [...] per line to increase speed.
Answer
the number and duration of fixations


statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Parent (intermediate) annotation

Open it
You must minimize the number and duration of fixations per line to increase speed.

Original toplevel document

Scientific Speed Reading: How to Read 300% Faster in 20 Minutes | The Blog of Author Tim Ferriss
when open, a pen, and a timer (a stop watch with alarm or kitchen timer is ideal). You should complete the 20 minutes of exercises in one session. First, several definitions and distinctions specific to the reading process: A) Synopsis: <span>You must minimize the number and duration of fixations per line to increase speed. You do not read in a straight line, but rather in a sequence of saccadic movements (jumps). Each of these saccades ends with a fixation, or a temporary snapshot of the text within yo







#topology
One reason why finite intersections are needed in a topology is that it preserves what we think of as "openness" in a metric space.

statusnot read reprioritisations
last reprioritisation on reading queue position [%]
started reading on finished reading on

measure theory - Difference between topology and sigma-algebra axioms. - Mathematics Stack Exchange
accepted Your question is a little vague, but here is something to consider: Topology is normally discussed as its own subject while σσ-algebras are typically just used as a tool in measure theory. <span>One reason why finite intersections are needed in a topology is that it preserves what we think of as "openness" in a metric space. For instance, the finite intersection of any intervals of the form (a,b)⊆ℝ(a,b)⊆R still has the property of containing a ball around each point. This property is not shared with σσ-al




Flashcard 2965969964300

Tags
#topology
Question
One reason why [...] are needed in a topology is that it preserves what we think of as "openness" in a metric space.
Answer
finite intersections


statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Parent (intermediate) annotation

Open it
One reason why finite intersections are needed in a topology is that it preserves what we think of as "openness" in a metric space.

Original toplevel document

measure theory - Difference between topology and sigma-algebra axioms. - Mathematics Stack Exchange
accepted Your question is a little vague, but here is something to consider: Topology is normally discussed as its own subject while σσ-algebras are typically just used as a tool in measure theory. <span>One reason why finite intersections are needed in a topology is that it preserves what we think of as "openness" in a metric space. For instance, the finite intersection of any intervals of the form (a,b)⊆ℝ(a,b)⊆R still has the property of containing a ball around each point. This property is not shared with σσ-al







Flashcard 2965974945036

Tags
#borel-algebra #measure-theory
Question
a [...] is any set in a topological space that can be formed from open sets through countable union, countable intersection, and relative complement.
Answer
Borel set


statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Parent (intermediate) annotation

Open it
In mathematics, a Borel set is any set in a topological space that can be formed from open sets (or, equivalently, from closed sets) through the operations of countable union, countable intersection, and relative

Original toplevel document

Borel set - Wikipedia
Borel set - Wikipedia Borel set From Wikipedia, the free encyclopedia Jump to: navigation, search In mathematics, a Borel set is any set in a topological space that can be formed from open sets (or, equivalently, from closed sets) through the operations of countable union, countable intersection, and relative complement. Borel sets are named after Émile Borel. For a topological space X, the collection of all Borel sets on X forms a σ-algebra, known as the Borel algebra or Borel σ-algebra. The Borel al







#sets #sigma-algebra

the relative complement of A in B is the set of elements in B but not in A .

The relative complement of \({\displaystyle B\cap A^{\complement }=B\setminus A}\)

statusnot read reprioritisations
last reprioritisation on reading queue position [%]
started reading on finished reading on




Flashcard 2965984644364

[unknown IMAGE 2965987265804]
Tags
#has-images #sets #sigma-algebra
Question

the relative complement of A in B is the set of elements [...] .

Answer
in B but not in A

\({\displaystyle B\cap A^{\complement }=B\setminus A}\)


statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Parent (intermediate) annotation

Open it
the relative complement of A in B is the set of elements in B but not in A . The relative complement of \({\displaystyle B\cap A^{\complement }=B\setminus A}\)

Original toplevel document

Complement (set theory) - Wikipedia







#probability-theory
If \({\mathcal {F}}\,\) is the Borel σ-algebra on the set of real numbers, then there is a unique probability measure on \({\mathcal {F}}\,\) for any cdf, and vice versa.

statusnot read reprioritisations
last reprioritisation on reading queue position [%]
started reading on finished reading on

Probability theory - Wikipedia
{\displaystyle {\mathcal {F}}\,} is called a probability measure if P ( Ω ) = 1. {\displaystyle P(\Omega )=1.\,} <span>If F {\displaystyle {\mathcal {F}}\,} is the Borel σ-algebra on the set of real numbers, then there is a unique probability measure on F {\displaystyle {\mathcal {F}}\,} for any cdf, and vice versa. The measure corresponding to a cdf is said to be induced by the cdf. This measure coincides with the pmf for discrete variables and pdf for continuous variables, making the measure-theo




Flashcard 2965992770828

Tags
#probability-theory
Question
If \({\mathcal {F}}\,\) is [...], then there is a unique probability measure on \({\mathcal {F}}\,\) for any cdf, and vice versa.
Answer
the Borel σ-algebra on the set of real numbers


statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Parent (intermediate) annotation

Open it
If \({\mathcal {F}}\,\) is the Borel σ-algebra on the set of real numbers, then there is a unique probability measure on \({\mathcal {F}}\,\) for any cdf, and vice versa.

Original toplevel document

Probability theory - Wikipedia
{\displaystyle {\mathcal {F}}\,} is called a probability measure if P ( Ω ) = 1. {\displaystyle P(\Omega )=1.\,} <span>If F {\displaystyle {\mathcal {F}}\,} is the Borel σ-algebra on the set of real numbers, then there is a unique probability measure on F {\displaystyle {\mathcal {F}}\,} for any cdf, and vice versa. The measure corresponding to a cdf is said to be induced by the cdf. This measure coincides with the pmf for discrete variables and pdf for continuous variables, making the measure-theo







#has-images

如何自己购买印度“救命药”(已上图)附加福利


spinit();

马牌娱乐城【2018世界杯官方合作伙伴】

喜讯:热烈祝贺马牌娱乐城入驻草榴社区,马牌娱乐城是菲律宾合法博彩公司,我们提供体育,真人百家乐,大额无忧,日提款千万最快1分钟到账,
mp115.com

[澳门金沙] 注册即送300元,可提款,网上真人真钱视频赌博

全球十二大品牌电子平台,值得信任。1元存取款,真人百家乐,龙虎斗,牛牛,AV捕鱼王,上万款老虎机游戏。持有澳门牌照、政府监督、大额无忧,百万提款3分钟火速到账,天天返水3.0%无上限!
www.4445.com


右下角点击一下就可以直接和客服对话了
可能中国市场很大他们也会用翻译软件跟你中文交流 所以基本是没有障碍的
英文好的可以直接打电话过去联系
另外阿波罗官网药房是可以还价的,很奇葩的一个国家。
很多人不知道什么救命药,
比如治愈丙肝的吉利德,癌症肿瘤进口靶向药,这些在印度都是买到的。
价格悬殊可以说想多大就有多大

新人1024回复很慢 有需要了解更多的可以私信我留下VX
不知道留站外网址有没有违规
如有违规请版主及时删贴
另外给一波福利,印度的西药伟哥之前很多大神都介绍过
告诉大家几款印度的草本伟哥,不含西药成分的。
这几个亲试有效的,其实我们老祖宗以前应该也有很多的,要不古代那些皇帝怎么雨露均沾
真的不知道那些配方都遗落到哪里去了



  • null

游客多年 终得一码 非常感谢
没啥经验,就分享一些自己的作为印度代购的一些经验
之前看过百舸大神介绍的印度伟哥类很详细,就不多做介绍了
一个合格的印度代购主要是做什么,当然是做药了。
印度的药为什么便宜
1、政府保护仿制,充当“推销员”
1970年印度总理英迪拉·甘地主导修订了的《专利法》规定,对食品、药品只授予工艺专利,不授予产品专利,这意味着印度放弃了对药品化合物的知识产权保护,
制度上的宽松使得本国企业能够获得大量仿制药生产许可,从而为印度仿制药提供了快速扩张的空间。

2、人力成本低,技术雄厚
印度制药可谓占尽天时地利人和,制造业成本低、操作技术简单、劳动强度大,使得印度各个种类的制造业发展迅速,也逐渐积攒了雄厚的技术。
目前印度境内拥有FDA认证的药厂共有119家,可向美国出口约900种获得FDA批准的药物和制药原料;拥有英国药品管理局认证的药厂也已达80多家。

我给大家介绍的是如何购买印度这些救命药,可能这个方法会断了一些人的财路,但也希望更多人能吃得起吧
很多人可能也知道印度药,也找代购买过,有些医院的主治医生也都在推销,不得不说这是一个很大的利益链吧
其实这些要完全可以自己购买,价格上面肯定会优惠一些,毕竟只要倒手就要加价,不赚钱别人怎么生活,无可厚非吧
可恨的是那些骗子代购,骗这个钱真的是禽兽不如,对于需要这些药的家庭来说真的是雪上加霜

首先如何购买
印度大的药房有两家,阿波罗和罗氏,他们都是有网上药房的
以阿波罗举例:在阿波罗药房买药最大的难点不是语言问题,只要你会用电脑会上网,开个翻译软件和他们聊好了,他们不会不耐烦。虽然翻译软件翻译的可能不太准确,
但是大概的意思不会错的,彼此之间都能明白别人的意思,或者身边有英文水平高的朋友也可以请他帮忙。最大的难点就在信用卡上,必须要有VISA卡,
还要到银行去开通国际支付功能,还要有最少1万的额度。

进去阿波罗药房首页后点击右下角的“online”那里和工作人员沟通,告诉他你要什么和数量,跟他谈好价钱,然后他就会要求你提供医生开的处方药,一般我们的处方药是中文的,
只要用英文翻译好名字和药名和数量就可以了,提供处方药给他后(这个淘宝可以找某宝人工翻译),3个小时内他就会给你一个下单链接,付款之后他就会给你发货了,新手不会上图。
等学会的给大家上图演示一下

有几点需要注意下
1.收货人请填写病人姓名,手机号无所谓,因为一旦被扣可以凭处方,诊断书去海关拿药。只有极个别城市是没有人情的,大多数省份都是可以拿出来的,但请一次不要购买太多,有倒卖嫌疑
2,广西,福建,四川,江苏,山东(据说有个重要的会议在六月份),这几个地方是经常扣货的,广西,四川几乎见一个扣一个,
但都可以拿到,如果资料齐全的话,最好的找一个其他地区的亲戚,朋友,同学代收,转给你。
至于网址大家可以自行百度,另外如果请代购,请大家一定要担保交易,现在假的太多,不要相信什么违禁品不能担保交易,不管是国家还是某宝,都是处于一种模糊的态度,只是很多人不了解罢了
第一次发帖,胡乱写写,有什么问题可以私信我。我也是代购印度产品的,但不做这些“救命药”,做什么你们猜吧
https://www.apollopharmacy.in/
https://www.apollohospitals.com/
印度阿波罗药房和医院网址,也可自行度娘

statusnot read reprioritisations
last reprioritisation on reading queue position [%]
started reading on finished reading on




#has-images

如何自己购买印度“救命药”(已上图)附加福利


spinit();

马牌娱乐城【2018世界杯官方合作伙伴】

喜讯:热烈祝贺马牌娱乐城入驻草榴社区,马牌娱乐城是菲律宾合法博彩公司,我们提供体育,真人百家乐,大额无忧,日提款千万最快1分钟到账,
mp115.com

[澳门金沙] 注册即送300元,可提款,网上真人真钱视频赌博

全球十二大品牌电子平台,值得信任。1元存取款,真人百家乐,龙虎斗,牛牛,AV捕鱼王,上万款老虎机游戏。持有澳门牌照、政府监督、大额无忧,百万提款3分钟火速到账,天天返水3.0%无上限!
www.4445.com


右下角点击一下就可以直接和客服对话了
可能中国市场很大他们也会用翻译软件跟你中文交流 所以基本是没有障碍的
英文好的可以直接打电话过去联系
另外阿波罗官网药房是可以还价的,很奇葩的一个国家。
很多人不知道什么救命药,
比如治愈丙肝的吉利德,癌症肿瘤进口靶向药,这些在印度都是买到的。
价格悬殊可以说想多大就有多大

新人1024回复很慢 有需要了解更多的可以私信我留下VX
不知道留站外网址有没有违规
如有违规请版主及时删贴
另外给一波福利,印度的西药伟哥之前很多大神都介绍过
告诉大家几款印度的草本伟哥,不含西药成分的。
这几个亲试有效的,其实我们老祖宗以前应该也有很多的,要不古代那些皇帝怎么雨露均沾
真的不知道那些配方都遗落到哪里去了



  • null

游客多年 终得一码 非常感谢
没啥经验,就分享一些自己的作为印度代购的一些经验
之前看过百舸大神介绍的印度伟哥类很详细,就不多做介绍了
一个合格的印度代购主要是做什么,当然是做药了。
印度的药为什么便宜
1、政府保护仿制,充当“推销员”
1970年印度总理英迪拉·甘地主导修订了的《专利法》规定,对食品、药品只授予工艺专利,不授予产品专利,这意味着印度放弃了对药品化合物的知识产权保护,
制度上的宽松使得本国企业能够获得大量仿制药生产许可,从而为印度仿制药提供了快速扩张的空间。

2、人力成本低,技术雄厚
印度制药可谓占尽天时地利人和,制造业成本低、操作技术简单、劳动强度大,使得印度各个种类的制造业发展迅速,也逐渐积攒了雄厚的技术。
目前印度境内拥有FDA认证的药厂共有119家,可向美国出口约900种获得FDA批准的药物和制药原料;拥有英国药品管理局认证的药厂也已达80多家。

我给大家介绍的是如何购买印度这些救命药,可能这个方法会断了一些人的财路,但也希望更多人能吃得起吧
很多人可能也知道印度药,也找代购买过,有些医院的主治医生也都在推销,不得不说这是一个很大的利益链吧
其实这些要完全可以自己购买,价格上面肯定会优惠一些,毕竟只要倒手就要加价,不赚钱别人怎么生活,无可厚非吧
可恨的是那些骗子代购,骗这个钱真的是禽兽不如,对于需要这些药的家庭来说真的是雪上加霜

首先如何购买
印度大的药房有两家,阿波罗和罗氏,他们都是有网上药房的
以阿波罗举例:在阿波罗药房买药最大的难点不是语言问题,只要你会用电脑会上网,开个翻译软件和他们聊好了,他们不会不耐烦。虽然翻译软件翻译的可能不太准确,
但是大概的意思不会错的,彼此之间都能明白别人的意思,或者身边有英文水平高的朋友也可以请他帮忙。最大的难点就在信用卡上,必须要有VISA卡,
还要到银行去开通国际支付功能,还要有最少1万的额度。

进去阿波罗药房首页后点击右下角的“online”那里和工作人员沟通,告诉他你要什么和数量,跟他谈好价钱,然后他就会要求你提供医生开的处方药,一般我们的处方药是中文的,
只要用英文翻译好名字和药名和数量就可以了,提供处方药给他后(这个淘宝可以找某宝人工翻译),3个小时内他就会给你一个下单链接,付款之后他就会给你发货了,新手不会上图。
等学会的给大家上图演示一下

有几点需要注意下
1.收货人请填写病人姓名,手机号无所谓,因为一旦被扣可以凭处方,诊断书去海关拿药。只有极个别城市是没有人情的,大多数省份都是可以拿出来的,但请一次不要购买太多,有倒卖嫌疑
2,广西,福建,四川,江苏,山东(据说有个重要的会议在六月份),这几个地方是经常扣货的,广西,四川几乎见一个扣一个,
但都可以拿到,如果资料齐全的话,最好的找一个其他地区的亲戚,朋友,同学代收,转给你。
至于网址大家可以自行百度,另外如果请代购,请大家一定要担保交易,现在假的太多,不要相信什么违禁品不能担保交易,不管是国家还是某宝,都是处于一种模糊的态度,只是很多人不了解罢了
第一次发帖,胡乱写写,有什么问题可以私信我。我也是代购印度产品的,但不做这些“救命药”,做什么你们猜吧
https://www.apollopharmacy.in/
https://www.apollohospitals.com/
印度阿波罗药房和医院网址,也可自行度娘

statusnot read reprioritisations
last reprioritisation on reading queue position [%]
started reading on finished reading on




#computer-science
Bit (Binary Digit)
A bit (short for binary digit) is the smallest unit of data in a computer. A bit has a single binary value, either 0 or 1. Although computers usually provide instructions that can test and manipulate bits, they generally are designed to store data and execute instructions in bit multiples called bytes. In most computer systems, there are eight bits in a byte. The value of a bit is usually stored as either above or below a designated level of electrical charge in a single capacitor within a memory device.

statusnot read reprioritisations
last reprioritisation on reading queue position [%]
started reading on finished reading on




Byte
#computer-science
In most computer systems, a byte is a unit of data that is eight binary digits long. Bytes are often used to represent a character such as a letter, ...

statusnot read reprioritisations
last reprioritisation on reading queue position [%]
started reading on finished reading on




#computer-science #cs50
computers can conveniently represent a 0 or 1 with electricity, since something can either be turned on or off. And computers have lots of transistors, microscopic switches inside, that can be turned on and off to represent data.

statusnot read reprioritisations
last reprioritisation on reading queue position [%]
started reading on finished reading on

Lecture0
4 2 1 1 1 1 4 x 1 2 x 1 1 x 1 But once we have used up all the places, we need more bits , or binary digit, which stores a 0 or 1 . It turns out that <span>computers can conveniently represent a 0 or 1 with electricity, since something can either be turned on or off. And computers have lots of transistors, microscopic switches inside, that can be turned on and off to represent data. Now that we can store numbers, we need to represent words, or letters. Luckily, there is a standard mapping from numbers to letters, called ASCII . We can also similarly use ce




#cs50
Now that we can store numbers, we need to represent words, or letters. Luckily, there is a standard mapping from numbers to letters, called ASCII.

statusnot read reprioritisations
last reprioritisation on reading queue position [%]
started reading on finished reading on

Lecture0
out that computers can conveniently represent a 0 or 1 with electricity, since something can either be turned on or off. And computers have lots of transistors, microscopic switches inside, that can be turned on and off to represent data. <span>Now that we can store numbers, we need to represent words, or letters. Luckily, there is a standard mapping from numbers to letters, called ASCII . We can also similarly use certain standards to represent graphics and videos. A series of bits, that represent the numbers 72 73 33 might be the characters H I ! in




#cs50
Now that we can store numbers, we need to represent words, or letters. Luckily, there is a standard mapping from numbers to letters, called ASCII.

statusnot read reprioritisations
last reprioritisation on reading queue position [%]
started reading on finished reading on

Lecture0
out that computers can conveniently represent a 0 or 1 with electricity, since something can either be turned on or off. And computers have lots of transistors, microscopic switches inside, that can be turned on and off to represent data. <span>Now that we can store numbers, we need to represent words, or letters. Luckily, there is a standard mapping from numbers to letters, called ASCII . We can also similarly use certain standards to represent graphics and videos. A series of bits, that represent the numbers 72 73 33 might be the characters H I ! in




#cs50
We can also similarly use certain standards to represent graphics and videos.

statusnot read reprioritisations
last reprioritisation on reading queue position [%]
started reading on finished reading on

Lecture0
istors, microscopic switches inside, that can be turned on and off to represent data. Now that we can store numbers, we need to represent words, or letters. Luckily, there is a standard mapping from numbers to letters, called ASCII . <span>We can also similarly use certain standards to represent graphics and videos. A series of bits, that represent the numbers 72 73 33 might be the characters H I ! in ASCII, but could also be interpreted by graphics programs as a color. RGB, for




#cs50
A series of bits, that represent the numbers 72 73 33 might be the characters H I ! in ASCII, but could also be interpreted by graphics programs as a color.

statusnot read reprioritisations
last reprioritisation on reading queue position [%]
started reading on finished reading on

Lecture0
ta. Now that we can store numbers, we need to represent words, or letters. Luckily, there is a standard mapping from numbers to letters, called ASCII . We can also similarly use certain standards to represent graphics and videos. <span>A series of bits, that represent the numbers 72 73 33 might be the characters H I ! in ASCII, but could also be interpreted by graphics programs as a color. RGB, for example, is a system where a color is represented by the amount of red, green, and blue light it is composed of. By mixing the above amounts of red, green, and blue, we get




ASCII abbreviated from American Standard Code for Information Interchange, is a character encoding standard for electronic communication. ASCII codes represent text in computers, telecommunications equipment, and other devices. Most modern character-encoding schemes are based on ASCII, although they support many additional characters.

statusnot read reprioritisations
last reprioritisation on reading queue position [%]
started reading on finished reading on




#cs50
RGB, for example, is a system where a color is represented by the amount of red, green, and blue light it is composed of. By mixing the above amounts of red, green, and blue, we get a color like a murky yellow. A picture on a screen, then, can be represented by lots and lots of these pixels, or single squares of color.

statusnot read reprioritisations
last reprioritisation on reading queue position [%]
started reading on finished reading on

Lecture0
similarly use certain standards to represent graphics and videos. A series of bits, that represent the numbers 72 73 33 might be the characters H I ! in ASCII, but could also be interpreted by graphics programs as a color. <span>RGB, for example, is a system where a color is represented by the amount of red, green, and blue light it is composed of. By mixing the above amounts of red, green, and blue, we get a color like a murky yellow. A picture on a screen, then, can be represented by lots and lots of these pixels, or single squares of color. For both ASCII and RGB, the maximum value that each character or amount of one color can be is 255, because one common standard group of bits is a byte , or 8 bits. In computer




#cs50 #lecture-1
algorithms, which is just step-by-step instructions on how to solve a problem.

statusnot read reprioritisations
last reprioritisation on reading queue position [%]
started reading on finished reading on

Lecture0
ere we start by taking ideas to solve simple problems, and layering these solutions until we can build more and more interesting applications. Algorithms Now that we know how to represent inputs and outputs, we can work on <span>algorithms, which is just step-by-step instructions on how to solve a problem. Computational thinking is the idea of having these precise instructions. For example, David might want to make a peanut butter and jelly sandwich from bread, peanut butter, and




#cs50 #lecture-1
In fact, when we write algorithms to solve problems, we need to think about cases when something unexpected happens. For example, the input might not be within the range of what we expect, so our computer might freeze or come up with an incorrect solution.

statusnot read reprioritisations
last reprioritisation on reading queue position [%]
started reading on finished reading on

Lecture0
on the plate". Then "unscrew the jam", "grab the knife", and "stick the knife in the jam". We continue with these instructions that get more and more specific, until David completes his sandwich. <span>In fact, when we write algorithms to solve problems, we need to think about cases when something unexpected happens. For example, the input might not be within the range of what we expect, so our computer might freeze or come up with an incorrect solution. We can see this in action with trying to find a name in the phone book, Mike Smith. One correct algorithm might be flipping through the phone book, page by page, until we find t




#cs50 #lecture-1

We also need to formalize the steps we are using to solve this problem. We can write something like the following:

 0 pick up phone book 1 open to middle of phone book 2 look at names 3 if Smith is among names 4 call Mike 5 else if Smith is earlier in book 6 open to middle of left half of book 7 go back to step 2 8 else if "Smith" is later in book 9 open to middle of right half of book
10 go back to step 2
11 else
12 quit
  • We start counting at 0 because that’s the default lowest value, with all the bits off.

  • In step 3, we have the word if, which is a fork in the road, where the next step may not be taken, so we indent it to visually separate it from the lines that are always followed.

  • The last else, in step 11, happens if we’re on the last page and Mike isn’t in the phone book, since we can no longer divide it.

These steps are pseudocode, English-like syntax that is similar in precision to code.

Words like pick up, open, and look are equivalent to functions in code, like verbs or actions that allow us to do something.

if, else if, and else are the keywords which represent forks in the road, or decisions based on answers to certain questions. These questions are called Boolean expressions, which have an answer of either true or false. For example, Smith among names is a question, as is Smith is earlier in book and Smith is later in book.

  • Notice too, that with one bit, we can represent true, with on, or 1, and false, with off, or 0.

Finally, go back creates loops, or series of steps that happen over and over, until we complete our algorithm.

statusnot read reprioritisations
last reprioritisation on reading queue position [%]
started reading on finished reading on

Lecture0
ferent shape, with time to solve growing more and more slowly as the size of the problem increases, since we are dividing the problem in half with each step. So an increase from 1000 to 2000 pages only requires one more step to solve. <span>We also need to formalize the steps we are using to solve this problem. We can write something like the following: 0 pick up phone book 1 open to middle of phone book 2 look at names 3 if Smith is among names 4 call Mike 5 else if Smith is earlier in book 6 open to middle of left half of book 7 go back to step 2 8 else if "Smith" is later in book 9 open to middle of right half of book 10 go back to step 2 11 else 12 quit We start counting at 0 because that’s the default lowest value, with all the bits off. In step 3, we have the word if , which is a fork in the road, where the next step may not be taken, so we indent it to visually separate it from the lines that are always followed. The last else , in step 11, happens if we’re on the last page and Mike isn’t in the phone book, since we can no longer divide it. These steps are pseudocode , English-like syntax that is similar in precision to code. Words like pick up , open , and look are equivalent to functions in code, like verbs or actions that allow us to do something. if , else if , and else are the keywords which represent forks in the road, or decisions based on answers to certain questions. These questions are called Boolean expressions , which have an answer of either true or false. For example, Smith among names is a question, as is Smith is earlier in book and Smith is later in book . Notice too, that with one bit, we can represent true, with on, or 1, and false, with off, or 0. Finally, go back creates loops, or series of steps that happen over and over, until we complete our algorithm. Introductions CS50 students are supported by a team of over 100 staff members, a few of whom will say hello. Doug Lloyd, who took CS50 12 years ago with no exp