Edited, memorised or added to reading queue

on 10-May-2021 (Mon)

Do you want BuboFlash to help you learning these things? Click here to log in or create user.

Flashcard 5525573864716

Tags
#continuum-mechanics #has-images
Question
Define body, region, particle and configuration of the body "more formally".
[unknown IMAGE 4730646564108]
Answer

More formally, in continuum mechanics a body \(\mathcal B\) is a collection of elements which can be put into one-to-one correspondence with some region \(\mathcal R\) of Euclidean point space. An element \(p \in \mathcal B\) is called a particle (or material point). Thus, given a body \(\mathcal B\), there is necessarily a mapping \(\chi\) that takes particles \(p \in \mathcal B\) into their geometric locations \(y \in \mathcal R\) in three-dimensional Euclidean space:

\(y = \chi(p) \quad \textrm{where} \quad p \in \mathcal B, \mathbf{y} \in \mathcal R.\)

The mapping \(\chi\) is called a configuration of the body \(\mathcal B\); \(\mathbf y\) is the position occupied by the particle \(p\) in the configuration \(\chi\); and \(\mathcal R\) is the region occupied by the body in the configuration \(\chi\). Often, we write \(\mathcal R = \chi \left( \mathcal B \right)\).


statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Parent (intermediate) annotation

Open it
More formally, in continuum mechanics a body \(\mathcal B\) is a collection of elements which can be put into one-to-one correspondence with some region \(\mathcal R\) of Euclidean point space. An element \(p \in \mathcal B\) is called a particle (or material point). Thus, given a body \(\mathcal B\), there is necessarily a mapping \(\chi\) that takes particles \(p \in \mathcal B\) into their geometric locations \(y \in \mathcal R\) in three-dimensional Euclidean space: \(y = \chi(p) \quad \textrm{where} \quad p \in \mathcal B, \mathbf{y} \in \mathcal R.\) The mapping \(\chi\) is called a configuration of the body \(\mathcal B\); \(\mathbf y\) is the position occupied by the particle \(p\) in the configuration \(\chi\); and \(\mathcal R\) is the region occupied by the body in the configuration \(\chi\). Often, we write \(\mathcal R = \chi \left( \mathcal B \right)\).

Original toplevel document (pdf)

cannot see any pdfs