Learning Machine Architecture
The proposed RNN model is consisted of one input layer, one hidden (recurrent) layer, and one output layer. The input layer is an auto-encoder which extracts features from inputs. The CLN, R, F, and M values for each customer at each time-step t are the input sequence to the RNN model presented in Figure 4. The R, F, and M value of the next time-step t + 1 is shown to the model as target through predefined time intervals. The time-step t can be set depending on the application. For example, for grocery stores it can be weekly or bi-weekly and for sports wear every season