Edited, memorised or added to reading queue

on 02-Jan-2024 (Tue)

Do you want BuboFlash to help you learning these things? Click here to log in or create user.

随机过程的期望值
For any random process \(X_{t}\), the Expected Value is \(\mathbf{E}[X_{t}]=\int_{\Omega}X_{t}(\alpha)P(d\alpha)=\int_\mathbb{R}x\mu_{t}(dx)\)
statusnot read reprioritisations
last reprioritisation on suggested re-reading day
started reading on finished reading on




Flashcard 7609075764492

Question
For any random process \(X_{t}\), the Expected Value is [...]
Answer
\(\mathbf{E}[X_{t}]=\int_{\Omega}X_{t}(\alpha)P(d\alpha)=\int_\mathbb{R}x\mu_{t}(dx)\)

statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

随机过程的期望值
For any random process \(X_{t}\), the Expected Value is \(\mathbf{E}[X_{t}]=\int_{\Omega}X_{t}(\alpha)P(d\alpha)=\int_\mathbb{R}x\mu_{t}(dx)\)







随机过程的方差
For any random process \(X_{t}\), the Varience is \(\operatorname{Var}[X_{t}]=\mathbf{E}[(X_{t}-\mathbf{E}[X_{t}])^{2}]\)
statusnot read reprioritisations
last reprioritisation on suggested re-reading day
started reading on finished reading on




Flashcard 7609079172364

Question
For any random process \(X_{t}\), the Varience is [...]
Answer
\(\operatorname{Var}[X_{t}]=\mathbf{E}[(X_{t}-\mathbf{E}[X_{t}])^{2}]\)

statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

随机过程的方差
For any random process \(X_{t}\), the Varience is \(\operatorname{Var}[X_{t}]=\mathbf{E}[(X_{t}-\mathbf{E}[X_{t}])^{2}]\)







随机过程的自相关函数

For any random process \(X_{t}\), the Autocorrelation at time instants \(t_{1}\) and \(t_{2}\) is:

\(\displaystyle\mathbf{E}[X_{t_{1}}X_{t_{2}}]=\int_{\Omega}X_{t_{1}}(\alpha)X_{t_{2}}(\alpha)P(d\alpha)=\int_{\mathbb{R}^{2}}x_{1}x_{2}\mu_{t_{1}t_{2}}(dx_{1}\times dx_{2})\)

where \(\mu_{t_{1}t_{2}}(dx_{1}\times dx_{2})\) is a joint probability distribution.

statusnot read reprioritisations
last reprioritisation on suggested re-reading day
started reading on finished reading on




Flashcard 7609082580236

Question
For any random process \(X_{t}\), the Autocorrelation at time instants \(t_{1}\) and \(t_{2}\) is: [...]
Answer

\(\displaystyle\mathbf{E}[X_{t_{1}}X_{t_{2}}]=\int_{\Omega}X_{t_{1}}(\alpha)X_{t_{2}}(\alpha)P(d\alpha)=\int_{\mathbb{R}^{2}}x_{1}x_{2}\mu_{t_{1}t_{2}}(dx_{1}\times dx_{2})\)

where \(\mu_{t_{1}t_{2}}(dx_{1}\times dx_{2})\) is a joint probability distribution.


statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

随机过程的自相关函数
For any random process \(X_{t}\), the Autocorrelation at time instants \(t_{1}\) and \(t_{2}\) is: \(\displaystyle\mathbf{E}[X_{t_{1}}X_{t_{2}}]=\int_{\Omega}X_{t_{1}}(\alpha)X_{t_{2}}(\alpha)P(d\alpha)=\int_{\mathbb{R}^{2}}x_{1}x_{2}\mu_{t_{1}t_{2}}(dx_{1}\times dx_{2})\) where \(\mu_{t_{1}t_{2}}(dx_{1}\times dx_{2})\) is a joint probability distribution.







稳态信号条件

The process \(X_{t}\) is said to be stationary if for any \(t_{1},t_{2},t_{3}, . . .\) and \(τ\), \(\mu_{t_{1},t_{2},t_{3},\cdots}=\mu_{t_{1}+\tau,t_{2}+\tau,t_{3}+\tau,\cdots}\)

statusnot read reprioritisations
last reprioritisation on suggested re-reading day
started reading on finished reading on




Flashcard 7609093590284

Question

The process \(X_{t}\) is said to be stationary if [...]

Answer
for any \(t_{1},t_{2},t_{3}, . . .\) and \(τ\), \(\mu_{t_{1},t_{2},t_{3},\cdots}=\mu_{t_{1}+\tau,t_{2}+\tau,t_{3}+\tau,\cdots}\)

statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

稳态信号条件
The process \(X_{t}\) is said to be stationary if for any \(t_{1},t_{2},t_{3}, . . .\) and \(τ\), \(\mu_{t_{1},t_{2},t_{3},\cdots}=\mu_{t_{1}+\tau,t_{2}+\tau,t_{3}+\tau,\cdots}\)







广义稳态信号条件

The process \(X_{t}\) is said to be wide sense stationary (WSS) if \(\begin{align}\mathbf{E}[X_{t}]&=\text{constant}\\\mathbf{E}[X_{t_{1}}X_{t_{2}}]&=\text{depends only on }|t_{1}-t_{2}|\end{align}\)

statusnot read reprioritisations
last reprioritisation on suggested re-reading day
started reading on finished reading on




Flashcard 7609096998156

Question

The process \(X_{t}\) is said to be wide sense stationary (WSS) if [...]

Answer

\(\begin{align}\mathbf{E}[X_{t}]&=\text{constant}\\\mathbf{E}[X_{t_{1}}X_{t_{2}}]&=\text{depends only on }|t_{1}-t_{2}|\end{align}\)


statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

广义稳态信号条件
The process \(X_{t}\) is said to be wide sense stationary (WSS) if \(\begin{align}\mathbf{E}[X_{t}]&=\text{constant}\\\mathbf{E}[X_{t_{1}}X_{t_{2}}]&=\text{depends only on }|t_{1}-t_{2}|\end{align}\)







稳态信号或广义稳态信号的自相关函数定义
For a stationary or WSS process, the autocorrelation function is defined as \(r_{XX}(\tau)=\mathbf{E}[X_{t}X_{t+\tau}]\)
statusnot read reprioritisations
last reprioritisation on suggested re-reading day
started reading on finished reading on




Flashcard 7609099881740

Question
For a stationary or WSS process, the autocorrelation function is defined as [...]
Answer
\(r_{XX}(\tau)=\mathbf{E}[X_{t}X_{t+\tau}]\)

statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

稳态信号或广义稳态信号的自相关函数定义
For a stationary or WSS process, the autocorrelation function is defined as \(r_{XX}(\tau)=\mathbf{E}[X_{t}X_{t+\tau}]\)







伯努利分布的定义
伯努利分布的定义:\(\mu[p]=p \delta_0+(1-p) \delta_1\)
statusnot read reprioritisations
last reprioritisation on suggested re-reading day
started reading on finished reading on




Flashcard 7609109056780

Question
伯努利分布的定义:[...]
Answer
\(\mu[p]=p \delta_0+(1-p) \delta_1\)

statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

伯努利分布的定义
伯努利分布的定义:\(\mu[p]=p \delta_0+(1-p) \delta_1\)







伯努利分布的期望
伯努利分布的期望:\(\mathrm{E}[X] =p\)
statusnot read reprioritisations
last reprioritisation on suggested re-reading day
started reading on finished reading on




伯努利分布的方差
伯努利分布的方差:\(\operatorname{Var}[X] =p(1-p)\)
statusnot read reprioritisations
last reprioritisation on suggested re-reading day
started reading on finished reading on




二项分布的定义
二项分布的定义:\(\displaystyle\mu[p]=\sum_{k=0}^n\left(\begin{array}{l}n \\k\end{array}\right) p^k(1-p)^{n-k} \delta_k\)
statusnot read reprioritisations
last reprioritisation on suggested re-reading day
started reading on finished reading on




二项分布的期望
二项分布的期望:\(\mathrm{E}[X] =np\)
statusnot read reprioritisations
last reprioritisation on suggested re-reading day
started reading on finished reading on




二项分布的方差
二项分布的方差:\(\operatorname{Var}[X] =np(1-p)\)
statusnot read reprioritisations
last reprioritisation on suggested re-reading day
started reading on finished reading on