Edited, memorised or added to reading queue

on 19-Apr-2024 (Fri)

Do you want BuboFlash to help you learning these things? Click here to log in or create user.

Flashcard 7624066993420

Tags
#tensorflow #tensorflow-certificate
Question

from tensorflow.keras import Sequential
from tensorflow.keras.layers import Dense
import numpy as np

model = Sequential(Dense(1, input_shape=[1]))
model.[...](optimizer='sgd', loss='mean_squared_error')
xs = np.array([1,5,12,-1,10], dtype=float)
ys = np.array([5,13,27,1,23], dtype=float)
model.fit(xs, ys, epochs=500)
model.predict(x=[15])

Answer
compile

statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Tensorflow basics - typical flow of model building
from tensorflow.keras import Sequential from tensorflow.keras.layers import Dense import numpy as np model = Sequential(Dense(1, input_shape=[1])) model.compile(optimizer='sgd', loss='mean_squared_error') xs = np.array([1,5,12,-1,10], dtype=float) ys = np.array([5,13,27,1,23], dtype=float) model.fit(xs, ys, epochs=500) model.predict(x=[15]) </s







Flashcard 7624232144140

Tags
#tensorflow #tensorflow-certificate
Question
# Create matrix
another_matrix = tf.constant([[10. ,66.],
                              [5. , 9.],
                              [13. , 4.]], dtype=tf.float16)
another_matrix


<tf.Tensor: shape=[...], dtype=float16, numpy=
array([[10., 66.],
       [ 5.,  9.],
       [13.,  4.]], dtype=float16)>


another_matrix.ndim
2

Answer
(3, 2)

statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Tensors fundamentals - creating tensors
# Create matrix another_matrix = tf.constant([[10. ,66.], [5. , 9.], [13. , 4.]], dtype=tf.float16) another_matrix <tf.Tensor: shape=(3, 2), dtype=float16, numpy= array([[10., 66.], [ 5., 9.], [13., 4.]], dtype=float16)> another_matrix.ndim 2







Flashcard 7624622738700

Tags
#algebra #matrix #tensorflow #tensorflow-certificate
Question

In General:

To multiply an m×n matrix by an n×p matrix, the ns must be the same,
and the result is an [...] matrix.

Answer
m×p

statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Matrix multiplication
In General: To multiply an m×n matrix by an n×p matrix, the ns must be the same, and the result is an m×p matrix.