Edited, memorised or added to reading queue

on 27-Apr-2024 (Sat)

Do you want BuboFlash to help you learning these things? Click here to log in or create user.

[unknown IMAGE 7101511240972] #has-images #recurrent-neural-networks #rnn
This particular customer history can then be represented as a sequence of vectors with five elements: the input variable plus the four covariates. Individual-level covariates are strictly optional
statusnot read reprioritisations
last reprioritisation on suggested re-reading day
started reading on finished reading on


Parent (intermediate) annotation

Open it
This particular customer history can then be represented as a sequence of vectors with five elements: the input variable plus the four covariates. Individual-level covariates are strictly optional – in our empirical study, the Base model is built without any such variables. Whenever individual covariates are included, we label the model Extended. Note that the model is completely

Original toplevel document (pdf)

cannot see any pdfs




Flashcard 7625581137164

Tags
#feature-engineering #lstm #recurrent-neural-networks #rnn
Question
While an [...] can carry forward useful information from one timestep to the next, however, it is much less effective at capturing long-term dependencies (Bengio, Simard, & Frasconi, 1994; Pascanu, Mikolov, & Bengio, 2013). This limitation turns out to be a crucial problem in marketing analytics.
Answer
RNN

statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Parent (intermediate) annotation

Open it
While an RNN can carry forward useful information from one timestep to the next, however, it is much less effective at capturing long-term dependencies (Bengio, Simard, & Frasconi, 1994; Pascanu

Original toplevel document (pdf)

cannot see any pdfs







Different shapes of the tensors
#tensorflow #tensorflow-certificate
y_test.shape, y_pred.shape, y_pred.reshape((10, )).shape, tf.squeeze(y_pred).shape


(TensorShape([10]), (10, 1), (10,), TensorShape([10]))

statusnot read reprioritisations
last reprioritisation on suggested re-reading day
started reading on finished reading on




Flashcard 7625617837324

Tags
#tensorflow #tensorflow-certificate
Question
y_test.shape, y_pred.shape, y_pred.reshape((10, )).shape, [...](y_pred).shape


(TensorShape([10]), (10, 1), (10,), TensorShape([10]))

Answer
tf.squeeze

statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Different shapes of the tensors
y_test.shape, y_pred.shape, y_pred.reshape((10, )).shape, tf.squeeze(y_pred).shape (TensorShape([10]), (10, 1), (10,), TensorShape([10]))







Flashcard 7625619410188

Tags
#tensorflow #tensorflow-certificate
Question
y_test.shape, y_pred.shape, y_pred.[...]((10, )).shape, tf.squeeze(y_pred).shape


(TensorShape([10]), (10, 1), (10,), TensorShape([10]))

Answer
reshape

statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Different shapes of the tensors
y_test.shape, y_pred.shape, y_pred.reshape((10, )).shape, tf.squeeze(y_pred).shape (TensorShape([10]), (10, 1), (10,), TensorShape([10]))







Flashcard 7625620720908

Tags
#tensorflow #tensorflow-certificate
Question
y_test.shape, y_pred.shape, y_pred.reshape([...]).shape, tf.squeeze(y_pred).shape


(TensorShape([10]), (10, 1), (10,), TensorShape([10]))

Answer
(10, )

statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Different shapes of the tensors
y_test.shape, y_pred.shape, y_pred.reshape((10, )).shape, tf.squeeze(y_pred).shape (TensorShape([10]), (10, 1), (10,), TensorShape([10]))







Flashcard 7625622031628

Tags
#tensorflow #tensorflow-certificate
Question
y_test.shape, y_pred.shape, y_pred.reshape((10, )).shape, tf.squeeze(y_pred).shape


(TensorShape([10]), (10, 1), (10,), [...])

Answer
TensorShape([10])

statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Different shapes of the tensors
y_test.shape, y_pred.shape, y_pred.reshape((10, )).shape, tf.squeeze(y_pred).shape (TensorShape([10]), (10, 1), (10,), TensorShape([10]))







Flashcard 7625623604492

Tags
#tensorflow #tensorflow-certificate
Question
y_test.shape, y_pred.shape, y_pred.reshape((10, )).shape, tf.squeeze(y_pred).shape


(TensorShape([10]), (10, 1), [...], TensorShape([10]))

Answer
(10,)

statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Different shapes of the tensors
y_test.shape, y_pred.shape, y_pred.reshape((10, )).shape, tf.squeeze(y_pred).shape (TensorShape([10]), (10, 1), (10,), TensorShape([10]))







Calculate MSE "by hand" in steps - identify functions
#tensorflow #tensorflow-certificate
# Calculate MSE "by hand" in steps - identify functions

abs_err = tf.abs(tf.subtract(tf.cast(y_test, dtype=tf.float32), tf.squeeze(y_pred)))
sq_abs_err = tf.multiply(abs_err, abs_err)
sq_abs_err
tf.math.reduce_mean(sq_abs_err)



<tf.Tensor: shape=(), dtype=float32, numpy=155.11417>

statusnot read reprioritisations
last reprioritisation on suggested re-reading day
started reading on finished reading on




Flashcard 7625626750220

Tags
#tensorflow #tensorflow-certificate
Question
# Calculate MSE "by hand" in steps - identify functions

abs_err = tf.abs(tf.subtract(tf.cast(y_test, dtype=tf.float32), tf.squeeze(y_pred)))
sq_abs_err = tf.multiply(abs_err, abs_err)
sq_abs_err
tf.math.[...](sq_abs_err)



<tf.Tensor: shape=(), dtype=float32, numpy=155.11417>

Answer
reduce_mean

statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Calculate MSE &quot;by hand&quot; in steps - identify functions
te MSE "by hand" in steps - identify functions abs_err = tf.abs(tf.subtract(tf.cast(y_test, dtype=tf.float32), tf.squeeze(y_pred))) sq_abs_err = tf.multiply(abs_err, abs_err) sq_abs_err tf.math.<span>reduce_mean(sq_abs_err) <tf.Tensor: shape=(), dtype=float32, numpy=155.11417> <span>







Flashcard 7625628323084

Tags
#tensorflow #tensorflow-certificate
Question
# Calculate MSE "by hand" in steps - identify functions

abs_err = [...](tf.subtract(tf.cast(y_test, dtype=tf.float32), tf.squeeze(y_pred)))
sq_abs_err = tf.multiply(abs_err, abs_err)
sq_abs_err
tf.math.reduce_mean(sq_abs_err)



<tf.Tensor: shape=(), dtype=float32, numpy=155.11417>

Answer
tf.abs

statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Calculate MSE &quot;by hand&quot; in steps - identify functions
# Calculate MSE "by hand" in steps - identify functions abs_err = tf.abs(tf.subtract(tf.cast(y_test, dtype=tf.float32), tf.squeeze(y_pred))) sq_abs_err = tf.multiply(abs_err, abs_err) sq_abs_err tf.math.reduce_mean(sq_abs_err) <tf.Tensor: shape=(), dtype=







Flashcard 7625629371660

Tags
#tensorflow #tensorflow-certificate
Question
# Calculate MSE "by hand" in steps - identify functions

abs_err = tf.abs(tf.subtract([...](y_test, dtype=tf.float32), tf.squeeze(y_pred)))
sq_abs_err = tf.multiply(abs_err, abs_err)
sq_abs_err
tf.math.reduce_mean(sq_abs_err)



<tf.Tensor: shape=(), dtype=float32, numpy=155.11417>

Answer
tf.cast

statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Calculate MSE &quot;by hand&quot; in steps - identify functions
# Calculate MSE "by hand" in steps - identify functions abs_err = tf.abs(tf.subtract(tf.cast(y_test, dtype=tf.float32), tf.squeeze(y_pred))) sq_abs_err = tf.multiply(abs_err, abs_err) sq_abs_err tf.math.reduce_mean(sq_abs_err) <tf.Tensor: shape=(), dtype=float32, numpy=155.1







Flashcard 7625630420236

Tags
#tensorflow #tensorflow-certificate
Question
# Calculate MSE "by hand" in steps - identify functions

abs_err = tf.abs([...](tf.cast(y_test, dtype=tf.float32), tf.squeeze(y_pred)))
sq_abs_err = tf.multiply(abs_err, abs_err)
sq_abs_err
tf.math.reduce_mean(sq_abs_err)



<tf.Tensor: shape=(), dtype=float32, numpy=155.11417>

Answer
tf.subtract

statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Calculate MSE &quot;by hand&quot; in steps - identify functions
# Calculate MSE "by hand" in steps - identify functions abs_err = tf.abs(tf.subtract(tf.cast(y_test, dtype=tf.float32), tf.squeeze(y_pred))) sq_abs_err = tf.multiply(abs_err, abs_err) sq_abs_err tf.math.reduce_mean(sq_abs_err) <tf.Tensor: shape=(), dtype=float32, num







Flashcard 7625631468812

Tags
#tensorflow #tensorflow-certificate
Question
# Calculate MSE "by hand" in steps - identify functions

abs_err = tf.abs(tf.subtract(tf.cast(y_test, dtype=tf.float32), tf.squeeze(y_pred)))
sq_abs_err = tf.multiply(abs_err, abs_err)
sq_abs_err
tf.[...](sq_abs_err)  # mean squared error



<tf.Tensor: shape=(), dtype=float32, numpy=155.11417>

Answer
math.reduce_mean

statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Calculate MSE &quot;by hand&quot; in steps - identify functions
lculate MSE "by hand" in steps - identify functions abs_err = tf.abs(tf.subtract(tf.cast(y_test, dtype=tf.float32), tf.squeeze(y_pred))) sq_abs_err = tf.multiply(abs_err, abs_err) sq_abs_err tf.<span>math.reduce_mean(sq_abs_err) <tf.Tensor: shape=(), dtype=float32, numpy=155.11417> <span>







[unknown IMAGE 7625638546700]
Visualize model
#has-images #tensorflow #tensorflow-certificate
plot_model(model_2, show_shapes=True)

statusnot read reprioritisations
last reprioritisation on suggested re-reading day
started reading on finished reading on




Flashcard 7625641692428

Tags
#has-images #tensorflow #tensorflow-certificate
[unknown IMAGE 7625638546700]
Question
plot_model(model_2, [...])

Answer
show_shapes=True

statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Visualize model
plot_model(model_2, show_shapes=True)







Flashcard 7625643265292

Tags
#has-images #tensorflow #tensorflow-certificate
[unknown IMAGE 7625638546700]
Question
[...](model_2, show_shapes=True)

Answer
plot_model

statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Visualize model
plot_model(model_2, show_shapes=True)