Edited, memorised or added to reading queue

on 20-Mar-2025 (Thu)

Do you want BuboFlash to help you learning these things? Click here to log in or create user.

Flashcard 7687803899148

Tags
#has-images #tensorflow #tensorflow-certificate
[unknown IMAGE 7626420784396]
Question

## The 3 sets (or actually 2 sets: training and test set) - USING ONLY TensorFlow

tf.[...].set_seed(999)

X_train, X_test = tf.split(tf.random.shuffle(X, seed=42), num_or_size_splits=[40, 10])

Answer
random

statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Parent (intermediate) annotation

Open it
## The 3 sets (or actually 2 sets: training and test set) - USING ONLY TensorFlow tf.random.set_seed(999) X_train, X_test = tf.split(tf.random.shuffle(X, seed=42), num_or_size_splits=[40, 10])

Original toplevel document

TfC 01 regression
> evaulate -> tweak -> fit > evaluate -> .... Building model: experiment Evaluation model: visualize What can visualize? the data model itself the training of a model predictions <span>## The 3 sets (or actually 2 sets: training and test set) tf.random.set_seed(999) X_train, X_test = tf.split(tf.random.shuffle(X, seed=42), num_or_size_splits=[40, 10]) def plot_predictions(train_data = X_train, train_labels = y_train, test_data = X_test, test_labels = y_test, predictions = y_pred): """ Plots training data, testing_data """ plt.figure(







Flashcard 7687805996300

Tags
#conv2D #convolution #tensorflow #tensorflow-certificate
Question

Step 1 is to gather the data. You'll notice that there's a bit of a change here in that the training data needed to be reshaped. That's because the first convolution expects a single tensor containing everything, so instead of 60,000 28x28x1 items in a list, we have a single 4D list that is 60,000x28x28x1, and the same for the test images. If you don't do this, you'll get an error when training as the Convolutions do not recognize the shape.

import tensorflow as tf
mnist = tf.keras.datasets.fashion_mnist
(training_images, training_labels), (test_images, test_labels) = mnist.load_data()
training_images=training_images.reshape(60000, 28, 28, 1)
training_images=training_images / [...]

model = tf.keras.models.Sequential([
  tf.keras.layers.Conv2D(64, (3,3), activation='relu', input_shape=(28, 28, 1)),
  tf.keras.layers.MaxPooling2D(2, 2),
  tf.keras.layers.Conv2D(64, (3,3), activation='relu'),
  tf.keras.layers.MaxPooling2D(2, 2),
  tf.keras.layers.Flatten(),
  tf.keras.layers.Dense(128, activation='relu'),
  tf.keras.layers.Dense(10, activation='softmax')
])

Answer
255.0

statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Convolution Neural Network - introduction
sets.fashion_mnist (training_images, training_labels), (test_images, test_labels) = mnist.load_data() training_images=training_images.reshape(60000, 28, 28, 1) training_images=training_images / <span>255.0 model = tf.keras.models.Sequential([ tf.keras.layers.Conv2D(64, (3,3), activation='relu', input_shape=(28, 28, 1)), tf.keras.layers.MaxPooling2D(2, 2), tf.keras.layers.Conv2D(64, (3,3),