Generally speaking, explaining the predictions of vector-based methods is more difficult than often assumed. This holds even for linear models like logistic regression. Features are often preprocessed, for example to binarize counts (Sec. 2). Furthermore, they are typically strongly correlated, making it troublesome to interpret individual coefficients [6]. Table 3 shows exemplary features weights in a logistic regression model used to predict order probabilities. If hundreds of features are utilized and are correlated and preprocessed, explaining the impact of consumer actions becomes a complex and confusing task