Let
be the multiplicative group of positive real numbers, and let
be the additive group of real numbers.
The logarithm function
satisfies
for all
, so it is a group homomorphism. The exponential function
satisfies
for all
, so it too is a homomorphism.
The identities
and
show that
and
are inverses of each other. Since
is a homomorphism that has an inverse that is also a homomorphism,
is an isomorphism of groups.
Because
is an isomorphism, it translates multiplication of positive real numbers into addition of real numbers. This facility makes it possible to multiply real numbers using a ruler and a table of logarithms, or using a slide rule with a logarithmic scale.
| status | not read | reprioritisations | ||
|---|---|---|---|---|
| last reprioritisation on | suggested re-reading day | |||
| started reading on | finished reading on |