Do you want BuboFlash to help you learning these things? Or do you want to add or correct something? Click here to log in or create user.



Reading 54  Understanding Fixed‑Income Risk and Return (Layout)
#has-images #paracaidas-session #reading-la-ñora

Section 2 uses numerical examples to demonstrate the sources of return on an investment in a fixed-rate bond, which includes the receipt and reinvestment of coupon interest payments and the redemption of principal if the bond is held to maturity. The other source of return is capital gains (and losses) on the sale of the bond prior to maturity. Section 2 also shows that fixed-income investors holding the same bond can have different exposures to interest rate risk if their investment horizons differ. Discussion of credit risk, although critical to investors, is postponed to Section 5 so that attention can be focused on interest rate risk.

Section 3 provides a thorough review of bond duration and convexity, and shows how the statistics are calculated and used as measures of interest rate risk. Although procedures and formulas exist to calculate duration and convexity, these statistics can be approximated using basic bond-pricing techniques and a financial calculator. Commonly used versions of the statistics are covered, including Macaulay, modified, effective, and key rate durations. The distinction is made between risk measures that are based on changes in the bond’s yield-to-maturity (i.e., yield duration and convexity) and on benchmark yield curve changes (i.e., curve duration and convexity).

Section 4 returns to the issue of the investment horizon. When an investor has a short-term horizon, duration (and convexity) are used to estimate the change in the bond price. In this case, yield volatility matters. In particular, bonds with varying times-to-maturity have different degrees of yield volatility. When an investor has a long-term horizon, the interaction between coupon reinvestment risk and market price risk matters. The relationship among interest rate risk, bond duration, and the investment horizon is explored.

Section 5 discusses how the tools of duration and convexity can be extended to credit and liquidity risks and highlights how these different factors can affect a bond’s return and risk.

A summary of key points and practice problems in the CFA Institute multiple-choice format conclude the reading.

If you want to change selection, open document below and click on "Move attachment"

Reading 54  Understanding Fixed‑Income Risk and Return (Intro)
for a given change in interest rates. The second measure (convexity) improves on the duration estimate by taking into account the fact that the relationship between price and yield-to-maturity of a fixed-rate bond is not linear. <span>Section 2 uses numerical examples to demonstrate the sources of return on an investment in a fixed-rate bond, which includes the receipt and reinvestment of coupon interest payments and the redemption of principal if the bond is held to maturity. The other source of return is capital gains (and losses) on the sale of the bond prior to maturity. Section 2 also shows that fixed-income investors holding the same bond can have different exposures to interest rate risk if their investment horizons differ. Discussion of credit risk, although critical to investors, is postponed to Section 5 so that attention can be focused on interest rate risk. Section 3 provides a thorough review of bond duration and convexity, and shows how the statistics are calculated and used as measures of interest rate risk. Although procedures and formulas exist to calculate duration and convexity, these statistics can be approximated using basic bond-pricing techniques and a financial calculator. Commonly used versions of the statistics are covered, including Macaulay, modified, effective, and key rate durations. The distinction is made between risk measures that are based on changes in the bond’s yield-to-maturity (i.e., yield duration and convexity) and on benchmark yield curve changes (i.e., curve duration and convexity). Section 4 returns to the issue of the investment horizon. When an investor has a short-term horizon, duration (and convexity) are used to estimate the change in the bond price. In this case, yield volatility matters. In particular, bonds with varying times-to-maturity have different degrees of yield volatility. When an investor has a long-term horizon, the interaction between coupon reinvestment risk and market price risk matters. The relationship among interest rate risk, bond duration, and the investment horizon is explored. Section 5 discusses how the tools of duration and convexity can be extended to credit and liquidity risks and highlights how these different factors can affect a bond’s return and risk. A summary of key points and practice problems in the CFA Institute multiple-choice format conclude the reading. <span><body><html>


Summary

statusnot read reprioritisations
last reprioritisation on suggested re-reading day
started reading on finished reading on

Details



Discussion

Do you want to join discussion? Click here to log in or create user.