Do you want BuboFlash to help you learning these things? Or do you want to add or correct something? Click here to log in or create user.

Question

For a 2nd order linear inhomogeneous ODE

\(\frac{d^{2}y}{dx^{2}}+p(x)\frac{dy}{dx}+q(x)y(x)=r(x)\)

The particular integral of it is given by[Using "Varient of Parameters" and show all forms of the formula]

Answer

\(y_{p}(x)=u_{2}(x)\int^{x}\frac{u_{1}(\zeta)r(\zeta)}{W[u_{1}(\zeta),u_{2}(\zeta)]}d\zeta-u_{1}(x)\int^{x}\frac{u_{2}(\zeta)r(\zeta)}{W[u_{1}(\zeta),u_{2}(\zeta)]}d\zeta=\int^x \frac{\left|\begin{array}{cc}u_1(\zeta) & u_2(\zeta) \\u_1(x) & u_2(x)\end{array}\right|}{W\left[u_1(\zeta), u_2(\zeta)\right]} r(\zeta) d \zeta\)

where:

- \(\displaystyle W[u_{1}(x),u_{2}(x)]=\begin{vmatrix}u_{1}(x) & u_{2}(x) \\ u_{1}'(x) & u_{2}'(x)\end{vmatrix}=u_{1}(x)u_{2}'(x)-u_{2}(x)u_{1}'(x)\).

- \(u_{1}(x), u_{2}(x)\) is the complementary functions of the inhomogeneous ODE.

- \(r(x)\) is RHS of the inhomogeneous ODE.

Question

For a 2nd order linear inhomogeneous ODE

\(\frac{d^{2}y}{dx^{2}}+p(x)\frac{dy}{dx}+q(x)y(x)=r(x)\)

The particular integral of it is given by[Using "Varient of Parameters" and show all forms of the formula]

Answer

?

Question

For a 2nd order linear inhomogeneous ODE

\(\frac{d^{2}y}{dx^{2}}+p(x)\frac{dy}{dx}+q(x)y(x)=r(x)\)

The particular integral of it is given by[Using "Varient of Parameters" and show all forms of the formula]

Answer

\(y_{p}(x)=u_{2}(x)\int^{x}\frac{u_{1}(\zeta)r(\zeta)}{W[u_{1}(\zeta),u_{2}(\zeta)]}d\zeta-u_{1}(x)\int^{x}\frac{u_{2}(\zeta)r(\zeta)}{W[u_{1}(\zeta),u_{2}(\zeta)]}d\zeta=\int^x \frac{\left|\begin{array}{cc}u_1(\zeta) & u_2(\zeta) \\u_1(x) & u_2(x)\end{array}\right|}{W\left[u_1(\zeta), u_2(\zeta)\right]} r(\zeta) d \zeta\)

where:

- \(\displaystyle W[u_{1}(x),u_{2}(x)]=\begin{vmatrix}u_{1}(x) & u_{2}(x) \\ u_{1}'(x) & u_{2}'(x)\end{vmatrix}=u_{1}(x)u_{2}'(x)-u_{2}(x)u_{1}'(x)\).

- \(u_{1}(x), u_{2}(x)\) is the complementary functions of the inhomogeneous ODE.

- \(r(x)\) is RHS of the inhomogeneous ODE.

If you want to change selection, open document below and click on "Move attachment"

**Variation of Parameters for getting the particular integral of a 2nd order linear homogeneous ODE**

For a 2nd order linear inhomogeneous ODE \(\frac{d^{2}y}{dx^{2}}+p(x)\frac{dy}{dx}+q(x)y(x)=r(x)\) The particular integral of it is given by \(y_{p}(x)=u_{2}(x)\int^{x}\frac{u_{1}(\zeta)r(\zeta)}{W[u_{1}(\zeta),u_{2}(\zeta)]}d\zeta-u_{1}(x)\int^{x}\frac{u_{2}(\zeta)r(\zeta)}{W[u_{1}(\zeta),u_{2}(\zeta)]}d\zeta=\int^x \frac{\left|\begin{array}{cc}u_1(\zeta) & u_2(\zeta) \\u_1(x) & u_2(x)\end{array}\right|}{W\left[u_1(\zeta), u_2(\zeta)\right]} r(\zeta) d \zeta\) where: - \(\displaystyle W[u_{1}(x),u_{2}(x)]=\begin{vmatrix}u_{1}(x) & u_{2}(x) \\ u_{1}'(x) & u_{2}'(x)\end{vmatrix}=u_{1}(x)u_{2}'(x)-u_{2}(x)u_{1}'(x)\). - \(u_{1}(x), u_{2}(x)\) is the complementary functions of the inhomogeneous ODE. - \(r(x)\) is RHS of the inhomogeneous ODE.

For a 2nd order linear inhomogeneous ODE \(\frac{d^{2}y}{dx^{2}}+p(x)\frac{dy}{dx}+q(x)y(x)=r(x)\) The particular integral of it is given by \(y_{p}(x)=u_{2}(x)\int^{x}\frac{u_{1}(\zeta)r(\zeta)}{W[u_{1}(\zeta),u_{2}(\zeta)]}d\zeta-u_{1}(x)\int^{x}\frac{u_{2}(\zeta)r(\zeta)}{W[u_{1}(\zeta),u_{2}(\zeta)]}d\zeta=\int^x \frac{\left|\begin{array}{cc}u_1(\zeta) & u_2(\zeta) \\u_1(x) & u_2(x)\end{array}\right|}{W\left[u_1(\zeta), u_2(\zeta)\right]} r(\zeta) d \zeta\) where: - \(\displaystyle W[u_{1}(x),u_{2}(x)]=\begin{vmatrix}u_{1}(x) & u_{2}(x) \\ u_{1}'(x) & u_{2}'(x)\end{vmatrix}=u_{1}(x)u_{2}'(x)-u_{2}(x)u_{1}'(x)\). - \(u_{1}(x), u_{2}(x)\) is the complementary functions of the inhomogeneous ODE. - \(r(x)\) is RHS of the inhomogeneous ODE.

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

Do you want to join discussion? Click here to log in or create user.