If you want to change selection, open document below and click on "Move attachment"
Variation of Parameters for getting the particular integral of a 2nd order linear homogeneous ODE For a 2nd order linear inhomogeneous ODE \frac{d^{2}y}{dx^{2}}+p(x)\frac{dy}{dx}+q(x)y(x)=r(x) The particular integral of it is given by y_{p}(x)=u_{2}(x)\int^{x}\frac{u_{1}(\zeta)r(\zeta)}{W[u_{1}(\zeta),u_{2}(\zeta)]}d\zeta-u_{1}(x)\int^{x}\frac{u_{2}(\zeta)r(\zeta)}{W[u_{1}(\zeta),u_{2}(\zeta)]}d\zeta=\int^x \frac{\left|\begin{array}{cc}u_1(\zeta) & u_2(\zeta) \\u_1(x) & u_2(x)\end{array}\right|}{W\left[u_1(\zeta), u_2(\zeta)\right]} r(\zeta) d \zeta where: - \displaystyle W[u_{1}(x),u_{2}(x)]=\begin{vmatrix}u_{1}(x) & u_{2}(x) \\ u_{1}'(x) & u_{2}'(x)\end{vmatrix}=u_{1}(x)u_{2}'(x)-u_{2}(x)u_{1}'(x). - u_{1}(x), u_{2}(x) is the complementary functions of the inhomogeneous ODE. - r(x) is RHS of the inhomogeneous ODE.
Summary
status
not learned
measured difficulty
37% [default]
last interval [days]
repetition number in this series
0
memorised on
scheduled repetition
scheduled repetition interval
last repetition or drill
Details
No repetitions
Discussion
Do you want to join discussion? Click here to log in or create user.