Do you want BuboFlash to help you learning these things? Or do you want to add or correct something? Click here to log in or create user.



Question

For a 2nd order linear inhomogeneous ODE

\(\frac{d^{2}y}{dx^{2}}+p(x)\frac{dy}{dx}+q(x)y(x)=r(x)\)
The particular integral of it is given by[Using "Varient of Parameters" and show all forms of the formula]

Answer

\(y_{p}(x)=u_{2}(x)\int^{x}\frac{u_{1}(\zeta)r(\zeta)}{W[u_{1}(\zeta),u_{2}(\zeta)]}d\zeta-u_{1}(x)\int^{x}\frac{u_{2}(\zeta)r(\zeta)}{W[u_{1}(\zeta),u_{2}(\zeta)]}d\zeta=\int^x \frac{\left|\begin{array}{cc}u_1(\zeta) & u_2(\zeta) \\u_1(x) & u_2(x)\end{array}\right|}{W\left[u_1(\zeta), u_2(\zeta)\right]} r(\zeta) d \zeta\)

where:
- \(\displaystyle W[u_{1}(x),u_{2}(x)]=\begin{vmatrix}u_{1}(x) & u_{2}(x) \\ u_{1}'(x) & u_{2}'(x)\end{vmatrix}=u_{1}(x)u_{2}'(x)-u_{2}(x)u_{1}'(x)\).
- \(u_{1}(x), u_{2}(x)\) is the complementary functions of the inhomogeneous ODE.
- \(r(x)\) is RHS of the inhomogeneous ODE.


Question

For a 2nd order linear inhomogeneous ODE

\(\frac{d^{2}y}{dx^{2}}+p(x)\frac{dy}{dx}+q(x)y(x)=r(x)\)
The particular integral of it is given by[Using "Varient of Parameters" and show all forms of the formula]

Answer
?

Question

For a 2nd order linear inhomogeneous ODE

\(\frac{d^{2}y}{dx^{2}}+p(x)\frac{dy}{dx}+q(x)y(x)=r(x)\)
The particular integral of it is given by[Using "Varient of Parameters" and show all forms of the formula]

Answer

\(y_{p}(x)=u_{2}(x)\int^{x}\frac{u_{1}(\zeta)r(\zeta)}{W[u_{1}(\zeta),u_{2}(\zeta)]}d\zeta-u_{1}(x)\int^{x}\frac{u_{2}(\zeta)r(\zeta)}{W[u_{1}(\zeta),u_{2}(\zeta)]}d\zeta=\int^x \frac{\left|\begin{array}{cc}u_1(\zeta) & u_2(\zeta) \\u_1(x) & u_2(x)\end{array}\right|}{W\left[u_1(\zeta), u_2(\zeta)\right]} r(\zeta) d \zeta\)

where:
- \(\displaystyle W[u_{1}(x),u_{2}(x)]=\begin{vmatrix}u_{1}(x) & u_{2}(x) \\ u_{1}'(x) & u_{2}'(x)\end{vmatrix}=u_{1}(x)u_{2}'(x)-u_{2}(x)u_{1}'(x)\).
- \(u_{1}(x), u_{2}(x)\) is the complementary functions of the inhomogeneous ODE.
- \(r(x)\) is RHS of the inhomogeneous ODE.

If you want to change selection, open document below and click on "Move attachment"

Variation of Parameters for getting the particular integral of a 2nd order linear homogeneous ODE
For a 2nd order linear inhomogeneous ODE \(\frac{d^{2}y}{dx^{2}}+p(x)\frac{dy}{dx}+q(x)y(x)=r(x)\) The particular integral of it is given by \(y_{p}(x)=u_{2}(x)\int^{x}\frac{u_{1}(\zeta)r(\zeta)}{W[u_{1}(\zeta),u_{2}(\zeta)]}d\zeta-u_{1}(x)\int^{x}\frac{u_{2}(\zeta)r(\zeta)}{W[u_{1}(\zeta),u_{2}(\zeta)]}d\zeta=\int^x \frac{\left|\begin{array}{cc}u_1(\zeta) & u_2(\zeta) \\u_1(x) & u_2(x)\end{array}\right|}{W\left[u_1(\zeta), u_2(\zeta)\right]} r(\zeta) d \zeta\) where: - \(\displaystyle W[u_{1}(x),u_{2}(x)]=\begin{vmatrix}u_{1}(x) & u_{2}(x) \\ u_{1}'(x) & u_{2}'(x)\end{vmatrix}=u_{1}(x)u_{2}'(x)-u_{2}(x)u_{1}'(x)\). - \(u_{1}(x), u_{2}(x)\) is the complementary functions of the inhomogeneous ODE. - \(r(x)\) is RHS of the inhomogeneous ODE.

Summary

statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Details

No repetitions


Discussion

Do you want to join discussion? Click here to log in or create user.