根轨迹离开开环复数极点处的切线与正实轴的夹角,称为起始角,以\(\theta_{p_i}\)标志;根轨迹进人开环复数零点处的切线与正实轴的夹角,称为终止角,以\(\varphi_{z_i}\)表示。这些角度可按如下关系式求出:
\(\begin{aligned}& \theta_{p_i}=(2 k+1) \pi+\left(\sum_{j=1}^m \varphi_{z_j p_i}-\sum_{\substack{j=1 \\j \neq i}}^n \theta_{p_j p_i}\right) ; \quad k=0, \pm 1, \pm 2, \cdots \\& \varphi_{z_i}=(2 k+1) \pi-\left(\sum_{\substack{j=1 \\j \neq i}}^m \varphi_{z_j z_i}-\sum_{j=1}^n \theta_{p_j z_i}\right) ; \quad k=0, \pm 1, \pm 2, \cdots\end{aligned}\)
根轨迹离开开环复数极点处的切线与正实轴的夹角,称为起始角,以\(\theta_{p_i}\)标志;根轨迹进人开环复数零点处的切线与正实轴的夹角,称为终止角,以\(\varphi_{z_i}\)表示。这些角度可按如下关系式求出:
\(\begin{aligned}& \theta_{p_i}=(2 k+1) \pi+\left(\sum_{j=1}^m \varphi_{z_j p_i}-\sum_{\substack{j=1 \\j \neq i}}^n \theta_{p_j p_i}\right) ; \quad k=0, \pm 1, \pm 2, \cdots \\& \varphi_{z_i}=(2 k+1) \pi-\left(\sum_{\substack{j=1 \\j \neq i}}^m \varphi_{z_j z_i}-\sum_{j=1}^n \theta_{p_j z_i}\right) ; \quad k=0, \pm 1, \pm 2, \cdots\end{aligned}\)
status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|
repetition number in this series | 0 | memorised on | scheduled repetition | ||||
scheduled repetition interval | last repetition or drill |