Do you want BuboFlash to help you learning these things? Or do you want to add or correct something? Click here to log in or create user.



Question
根轨迹的起始角与终止角:[...]
Answer

根轨迹离开开环复数极点处的切线与正实轴的夹角,称为起始角,以\(\theta_{p_i}\)标志;根轨迹进人开环复数零点处的切线与正实轴的夹角,称为终止角,以\(\varphi_{z_i}\)表示。这些角度可按如下关系式求出:

\(\begin{aligned}& \theta_{p_i}=(2 k+1) \pi+\left(\sum_{j=1}^m \varphi_{z_j p_i}-\sum_{\substack{j=1 \\j \neq i}}^n \theta_{p_j p_i}\right) ; \quad k=0, \pm 1, \pm 2, \cdots \\& \varphi_{z_i}=(2 k+1) \pi-\left(\sum_{\substack{j=1 \\j \neq i}}^m \varphi_{z_j z_i}-\sum_{j=1}^n \theta_{p_j z_i}\right) ; \quad k=0, \pm 1, \pm 2, \cdots\end{aligned}\)


Question
根轨迹的起始角与终止角:[...]
Answer
?

Question
根轨迹的起始角与终止角:[...]
Answer

根轨迹离开开环复数极点处的切线与正实轴的夹角,称为起始角,以\(\theta_{p_i}\)标志;根轨迹进人开环复数零点处的切线与正实轴的夹角,称为终止角,以\(\varphi_{z_i}\)表示。这些角度可按如下关系式求出:

\(\begin{aligned}& \theta_{p_i}=(2 k+1) \pi+\left(\sum_{j=1}^m \varphi_{z_j p_i}-\sum_{\substack{j=1 \\j \neq i}}^n \theta_{p_j p_i}\right) ; \quad k=0, \pm 1, \pm 2, \cdots \\& \varphi_{z_i}=(2 k+1) \pi-\left(\sum_{\substack{j=1 \\j \neq i}}^m \varphi_{z_j z_i}-\sum_{j=1}^n \theta_{p_j z_i}\right) ; \quad k=0, \pm 1, \pm 2, \cdots\end{aligned}\)

If you want to change selection, open document below and click on "Move attachment"

根轨迹绘制基本法则·法则六
根轨迹的起始角与终止角:根轨迹离开开环复数极点处的切线与正实轴的夹角,称为起始角,以\(\theta_{p_i}\)标志;根轨迹进人开环复数零点处的切线与正实轴的夹角,称为终止角,以\(\varphi_{z_i}\)表示。这些角度可按如下关系式求出: \(\begin{aligned}& \theta_{p_i}=(2 k+1) \pi+\left(\sum_{j=1}^m \varphi_{z_j p_i}-\sum_{\substack{j=1 \\j \neq i}}^n \theta_{p_j p_i}\right) ; \quad k=0, \pm 1, \pm 2, \cdots \\& \varphi_{z_i}=(2 k+1) \pi-\left(\sum_{\substack{j=1 \\j \neq i}}^m \varphi_{z_j z_i}-\sum_{j=1}^n \theta_{p_j z_i}\right) ; \quad k=0, \pm 1, \pm 2, \cdots\end{aligned}\)

Summary

statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Details

No repetitions


Discussion

Do you want to join discussion? Click here to log in or create user.