Do you want BuboFlash to help you learning these things? Click here to log in or create user.

status | not read | reprioritisations | ||
---|---|---|---|---|

last reprioritisation on | reading queue position [%] | |||

started reading on | finished reading on |

Linear operator) Jump to: navigation, search "Linear transformation" redirects here. For fractional linear transformations, see Möbius transformation. Not to be confused with linear function. <span>In mathematics, a linear map (also called a linear mapping, linear transformation or, in some contexts, linear function) is a mapping V → W between two modules (including vector spaces) that preserves (in the sense defined below) the operations of addition and scalar multiplication. An important special case is when V = W, in which case the map is called a linear operator, [1] or an endomorphism of V. Sometimes the term linear function has the same meaning as li

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

linear mapping, linear transformation or, in some contexts, linear function) is a mapping V → W between two modules (including vector spaces) that preserves (in the sense defined below) the operations of addition and scalar multiplication. <span>An important special case is when V = W, in which case the map is called a linear operator, [1] or an endomorphism of V. Sometimes the term linear function has the same meaning as linear map, while in analytic geometry it does not. A linear map always maps linear subspaces onto linear subspaces (possibl

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

thematics, a linear map (also called a linear mapping, linear transformation or, in some contexts, linear function) is a mapping V → W between two modules (including vector spaces) that preserves (in the sense defined below) the operations of <span>addition and scalar multiplication. <span><body><html>

Linear operator) Jump to: navigation, search "Linear transformation" redirects here. For fractional linear transformations, see Möbius transformation. Not to be confused with linear function. <span>In mathematics, a linear map (also called a linear mapping, linear transformation or, in some contexts, linear function) is a mapping V → W between two modules (including vector spaces) that preserves (in the sense defined below) the operations of addition and scalar multiplication. An important special case is when V = W, in which case the map is called a linear operator, [1] or an endomorphism of V. Sometimes the term linear function has the same meaning as li

status | not read | reprioritisations | ||
---|---|---|---|---|

last reprioritisation on | reading queue position [%] | |||

started reading on | finished reading on |

for more information. [imagelink] [Help with translations!] Spectral theorem From Wikipedia, the free encyclopedia Jump to: navigation, search <span>In mathematics, particularly linear algebra and functional analysis, a spectral theorem is a result about when a linear operator or matrix can be diagonalized (that is, represented as a diagonal matrix in some basis). This is extremely useful because computations involving a diagonalizable matrix can often be reduced to much simpler computations involving the corresponding diagonal matrix. The concep

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

In mathematics, particularly linear algebra and functional analysis, a spectral theorem is a result about when a linear operator or matrix can be diagonalized (that is, represented as a diagonal matrix in some basis).

for more information. [imagelink] [Help with translations!] Spectral theorem From Wikipedia, the free encyclopedia Jump to: navigation, search <span>In mathematics, particularly linear algebra and functional analysis, a spectral theorem is a result about when a linear operator or matrix can be diagonalized (that is, represented as a diagonal matrix in some basis). This is extremely useful because computations involving a diagonalizable matrix can often be reduced to much simpler computations involving the corresponding diagonal matrix. The concep

status | not read | reprioritisations | ||
---|---|---|---|---|

last reprioritisation on | reading queue position [%] | |||

started reading on | finished reading on |

strings " madam curie " and " radium came " are given as C arrays. Each one is converted into a canonical form by sorting. Since both sorted strings literally agree, the original strings were anagrams of each other. <span>In mathematics and computer science, a canonical, normal, or standard form of a mathematical object is a standard way of presenting that object as a mathematical expression. The distinction between "canonical" and "normal" forms varies by subfield. In most fields, a canonical form specifies a unique representation for every object, while

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

In mathematics and computer science, a canonical, normal, or standard form of a mathematical object is a standard way of presenting that object as a mathematical expression.

strings " madam curie " and " radium came " are given as C arrays. Each one is converted into a canonical form by sorting. Since both sorted strings literally agree, the original strings were anagrams of each other. <span>In mathematics and computer science, a canonical, normal, or standard form of a mathematical object is a standard way of presenting that object as a mathematical expression. The distinction between "canonical" and "normal" forms varies by subfield. In most fields, a canonical form specifies a unique representation for every object, while

status | not read | reprioritisations | ||
---|---|---|---|---|

last reprioritisation on | reading queue position [%] | |||

started reading on | finished reading on |

dia, the free encyclopedia Jump to: navigation, search Not to be confused with Memorization. "Tabling" redirects here. For the parliamentary procedure, see Table (parliamentary procedure). <span>In computing, memoization or memoisation is an optimization technique used primarily to speed up computer programs by storing the results of expensive function calls and returning the cached result when the same inputs occur again. Memoization has also been used in other contexts (and for purposes other than speed gains), such as in simple mutually recursive descent parsing [1] . Although related to caching, memoi

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

In computing, memoization or memoisation is an optimization technique used primarily to speed up computer programs by storing the results of expensive function calls and returning the cached result when the same inputs occur a

dia, the free encyclopedia Jump to: navigation, search Not to be confused with Memorization. "Tabling" redirects here. For the parliamentary procedure, see Table (parliamentary procedure). <span>In computing, memoization or memoisation is an optimization technique used primarily to speed up computer programs by storing the results of expensive function calls and returning the cached result when the same inputs occur again. Memoization has also been used in other contexts (and for purposes other than speed gains), such as in simple mutually recursive descent parsing [1] . Although related to caching, memoi

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

In computing, memoization or memoisation is an optimization technique used primarily to speed up computer programs by storing the results of expensive function calls and returning the cached result when the same inputs occur again.

dia, the free encyclopedia Jump to: navigation, search Not to be confused with Memorization. "Tabling" redirects here. For the parliamentary procedure, see Table (parliamentary procedure). <span>In computing, memoization or memoisation is an optimization technique used primarily to speed up computer programs by storing the results of expensive function calls and returning the cached result when the same inputs occur again. Memoization has also been used in other contexts (and for purposes other than speed gains), such as in simple mutually recursive descent parsing [1] . Although related to caching, memoi

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

In computing, memoization or memoisation is an optimization technique used primarily to speed up computer programs by storing the results of expensive function calls and returning the cached result when the same inputs occur again.

dia, the free encyclopedia Jump to: navigation, search Not to be confused with Memorization. "Tabling" redirects here. For the parliamentary procedure, see Table (parliamentary procedure). <span>In computing, memoization or memoisation is an optimization technique used primarily to speed up computer programs by storing the results of expensive function calls and returning the cached result when the same inputs occur again. Memoization has also been used in other contexts (and for purposes other than speed gains), such as in simple mutually recursive descent parsing [1] . Although related to caching, memoi

status | not read | reprioritisations | ||
---|---|---|---|---|

last reprioritisation on | reading queue position [%] | |||

started reading on | finished reading on |

This article's factual accuracy is disputed. Relevant discussion may be found on the talk page. Please help to ensure that disputed statements are reliably sourced. (November 2015) (Learn how and when to remove this template message) <span>In computer science, mathematics, management science, economics and bioinformatics, dynamic programming (also known as dynamic optimization) is a method for solving a complex problem by breaking it down into a collection of simpler subproblems, solving each of those subproblems just once, and storing their solutions. The next time the same subproblem occurs, instead of recomputing its solution, one simply looks up the previously computed solution, thereby saving computation time at the expense of a (hopefully) modest expenditure in storage space. (Each of the subproblem solutions is indexed in some way, typically based on the values of its input parameters, so as to facilitate its lookup.) The technique of storing solutions to subproblems instead of recomputing them is called "memoization". Dynamic programming algorithms are often used for optimization. A dyna

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

head><head> In computer science, mathematics, management science, economics and bioinformatics, dynamic programming (also known as dynamic optimization) is a method for solving a complex problem by breaking it down into a collection of simpler subproblems, solving each of those subproblems just once, and storing their solutions. The next time the same subproblem occurs, instead of recomputing its solution, one simply looks up the p

This article's factual accuracy is disputed. Relevant discussion may be found on the talk page. Please help to ensure that disputed statements are reliably sourced. (November 2015) (Learn how and when to remove this template message) <span>In computer science, mathematics, management science, economics and bioinformatics, dynamic programming (also known as dynamic optimization) is a method for solving a complex problem by breaking it down into a collection of simpler subproblems, solving each of those subproblems just once, and storing their solutions. The next time the same subproblem occurs, instead of recomputing its solution, one simply looks up the previously computed solution, thereby saving computation time at the expense of a (hopefully) modest expenditure in storage space. (Each of the subproblem solutions is indexed in some way, typically based on the values of its input parameters, so as to facilitate its lookup.) The technique of storing solutions to subproblems instead of recomputing them is called "memoization". Dynamic programming algorithms are often used for optimization. A dyna

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

ter science, mathematics, management science, economics and bioinformatics, dynamic programming (also known as dynamic optimization) is a method for solving a complex problem by breaking it down into a collection of simpler subproblems, <span>solving each of those subproblems just once, and storing their solutions. The next time the same subproblem occurs, instead of recomputing its solution, one simply looks up the previously computed solution, thereby saving c

This article's factual accuracy is disputed. Relevant discussion may be found on the talk page. Please help to ensure that disputed statements are reliably sourced. (November 2015) (Learn how and when to remove this template message) <span>In computer science, mathematics, management science, economics and bioinformatics, dynamic programming (also known as dynamic optimization) is a method for solving a complex problem by breaking it down into a collection of simpler subproblems, solving each of those subproblems just once, and storing their solutions. The next time the same subproblem occurs, instead of recomputing its solution, one simply looks up the previously computed solution, thereby saving computation time at the expense of a (hopefully) modest expenditure in storage space. (Each of the subproblem solutions is indexed in some way, typically based on the values of its input parameters, so as to facilitate its lookup.) The technique of storing solutions to subproblems instead of recomputing them is called "memoization". Dynamic programming algorithms are often used for optimization. A dyna

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

nomics and bioinformatics, dynamic programming (also known as dynamic optimization) is a method for solving a complex problem by breaking it down into a collection of simpler subproblems, solving each of those subproblems just once, and <span>storing their solutions. The next time the same subproblem occurs, instead of recomputing its solution, one simply looks up the previously computed solution, thereby saving computation time at the expens

This article's factual accuracy is disputed. Relevant discussion may be found on the talk page. Please help to ensure that disputed statements are reliably sourced. (November 2015) (Learn how and when to remove this template message) <span>In computer science, mathematics, management science, economics and bioinformatics, dynamic programming (also known as dynamic optimization) is a method for solving a complex problem by breaking it down into a collection of simpler subproblems, solving each of those subproblems just once, and storing their solutions. The next time the same subproblem occurs, instead of recomputing its solution, one simply looks up the previously computed solution, thereby saving computation time at the expense of a (hopefully) modest expenditure in storage space. (Each of the subproblem solutions is indexed in some way, typically based on the values of its input parameters, so as to facilitate its lookup.) The technique of storing solutions to subproblems instead of recomputing them is called "memoization". Dynamic programming algorithms are often used for optimization. A dyna

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

is a method for solving a complex problem by breaking it down into a collection of simpler subproblems, solving each of those subproblems just once, and storing their solutions. The next time the same subproblem occurs, instead of <span>recomputing its solution, one simply looks up the previously computed solution, thereby saving computation time at the expense of a (hopefully) modest expenditure in storage space. (Each of the subproblem

This article's factual accuracy is disputed. Relevant discussion may be found on the talk page. Please help to ensure that disputed statements are reliably sourced. (November 2015) (Learn how and when to remove this template message) <span>In computer science, mathematics, management science, economics and bioinformatics, dynamic programming (also known as dynamic optimization) is a method for solving a complex problem by breaking it down into a collection of simpler subproblems, solving each of those subproblems just once, and storing their solutions. The next time the same subproblem occurs, instead of recomputing its solution, one simply looks up the previously computed solution, thereby saving computation time at the expense of a (hopefully) modest expenditure in storage space. (Each of the subproblem solutions is indexed in some way, typically based on the values of its input parameters, so as to facilitate its lookup.) The technique of storing solutions to subproblems instead of recomputing them is called "memoization". Dynamic programming algorithms are often used for optimization. A dyna

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

blem by breaking it down into a collection of simpler subproblems, solving each of those subproblems just once, and storing their solutions. The next time the same subproblem occurs, instead of recomputing its solution, one simply <span>looks up the previously computed solution, thereby saving computation time at the expense of a (hopefully) modest expenditure in storage space. (Each of the subproblem solutions is indexed in some way, typically based on t

This article's factual accuracy is disputed. Relevant discussion may be found on the talk page. Please help to ensure that disputed statements are reliably sourced. (November 2015) (Learn how and when to remove this template message) <span>In computer science, mathematics, management science, economics and bioinformatics, dynamic programming (also known as dynamic optimization) is a method for solving a complex problem by breaking it down into a collection of simpler subproblems, solving each of those subproblems just once, and storing their solutions. The next time the same subproblem occurs, instead of recomputing its solution, one simply looks up the previously computed solution, thereby saving computation time at the expense of a (hopefully) modest expenditure in storage space. (Each of the subproblem solutions is indexed in some way, typically based on the values of its input parameters, so as to facilitate its lookup.) The technique of storing solutions to subproblems instead of recomputing them is called "memoization". Dynamic programming algorithms are often used for optimization. A dyna

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

simpler subproblems, solving each of those subproblems just once, and storing their solutions. The next time the same subproblem occurs, instead of recomputing its solution, one simply looks up the previously computed solution, thereby <span>saving computation time at the expense of a (hopefully) modest expenditure in storage space. (Each of the subproblem solutions is indexed in some way, typically based on the values of its input parameters, so as to facilitate its lookup.) <span><body><html>

This article's factual accuracy is disputed. Relevant discussion may be found on the talk page. Please help to ensure that disputed statements are reliably sourced. (November 2015) (Learn how and when to remove this template message) <span>In computer science, mathematics, management science, economics and bioinformatics, dynamic programming (also known as dynamic optimization) is a method for solving a complex problem by breaking it down into a collection of simpler subproblems, solving each of those subproblems just once, and storing their solutions. The next time the same subproblem occurs, instead of recomputing its solution, one simply looks up the previously computed solution, thereby saving computation time at the expense of a (hopefully) modest expenditure in storage space. (Each of the subproblem solutions is indexed in some way, typically based on the values of its input parameters, so as to facilitate its lookup.) The technique of storing solutions to subproblems instead of recomputing them is called "memoization". Dynamic programming algorithms are often used for optimization. A dyna

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

occurs, instead of recomputing its solution, one simply looks up the previously computed solution, thereby saving computation time at the expense of a (hopefully) modest expenditure in storage space. (Each of the subproblem solutions is <span>indexed in some way, typically based on the values of its input parameters, so as to facilitate its lookup.) <span><body><html>

This article's factual accuracy is disputed. Relevant discussion may be found on the talk page. Please help to ensure that disputed statements are reliably sourced. (November 2015) (Learn how and when to remove this template message) <span>In computer science, mathematics, management science, economics and bioinformatics, dynamic programming (also known as dynamic optimization) is a method for solving a complex problem by breaking it down into a collection of simpler subproblems, solving each of those subproblems just once, and storing their solutions. The next time the same subproblem occurs, instead of recomputing its solution, one simply looks up the previously computed solution, thereby saving computation time at the expense of a (hopefully) modest expenditure in storage space. (Each of the subproblem solutions is indexed in some way, typically based on the values of its input parameters, so as to facilitate its lookup.) The technique of storing solutions to subproblems instead of recomputing them is called "memoization". Dynamic programming algorithms are often used for optimization. A dyna

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

tion, one simply looks up the previously computed solution, thereby saving computation time at the expense of a (hopefully) modest expenditure in storage space. (Each of the subproblem solutions is indexed in some way, typically based on <span>the values of its input parameters, so as to facilitate its lookup.) <span><body><html>

This article's factual accuracy is disputed. Relevant discussion may be found on the talk page. Please help to ensure that disputed statements are reliably sourced. (November 2015) (Learn how and when to remove this template message) <span>In computer science, mathematics, management science, economics and bioinformatics, dynamic programming (also known as dynamic optimization) is a method for solving a complex problem by breaking it down into a collection of simpler subproblems, solving each of those subproblems just once, and storing their solutions. The next time the same subproblem occurs, instead of recomputing its solution, one simply looks up the previously computed solution, thereby saving computation time at the expense of a (hopefully) modest expenditure in storage space. (Each of the subproblem solutions is indexed in some way, typically based on the values of its input parameters, so as to facilitate its lookup.) The technique of storing solutions to subproblems instead of recomputing them is called "memoization". Dynamic programming algorithms are often used for optimization. A dyna

status | not read | reprioritisations | ||
---|---|---|---|---|

last reprioritisation on | reading queue position [%] | |||

started reading on | finished reading on |

y Real estate Reinsurance Over-the-counter (off-exchange) Forwards Options Spot market Swaps Trading Participants Regulation Clearing Related areas Banks and banking Finance corporate personal public v t e <span>In finance, an option is a contract which gives the buyer (the owner or holder of the option) the right, but not the obligation, to buy or sell an underlying asset or instrument at a specified strike price on a specified date, depending on the form of the option. The strike price may be set by reference to the spot price (market price) of the underlying security or commodity on the day an option is taken out, or it may be fixed at a discount or

status | not read | reprioritisations | ||
---|---|---|---|---|

last reprioritisation on | reading queue position [%] | |||

started reading on | finished reading on |

or commodity on the day an option is taken out, or it may be fixed at a discount or at a premium. The seller has the corresponding obligation to fulfill the transaction – to sell or buy – if the buyer (owner) "exercises" the option. <span>An option that conveys to the owner the right to buy at a specific price is referred to as a call; an option that conveys the right of the owner to sell at a specific price is referred to as a put. Both are commonly traded, but the call option is more frequently discussed. The seller may grant an option to a buyer as part of another transaction, such as a share issue or as part of an employee incentive scheme, otherwise a buyer would pay a premium to th

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

In finance, an option is a contract which gives the buyer (the owner or holder of the option) the right, but not the obligation, to buy or sell an underlying asset or instrument at a specified strike price on a specified date, depending on the form of the option.

y Real estate Reinsurance Over-the-counter (off-exchange) Forwards Options Spot market Swaps Trading Participants Regulation Clearing Related areas Banks and banking Finance corporate personal public v t e <span>In finance, an option is a contract which gives the buyer (the owner or holder of the option) the right, but not the obligation, to buy or sell an underlying asset or instrument at a specified strike price on a specified date, depending on the form of the option. The strike price may be set by reference to the spot price (market price) of the underlying security or commodity on the day an option is taken out, or it may be fixed at a discount or

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

In finance, an option is a contract which gives the buyer (the owner or holder of the option) the right, but not the obligation, to buy or sell an underlying asset or instrument at a specified strike price on a specified date, depending on the form of the option.

y Real estate Reinsurance Over-the-counter (off-exchange) Forwards Options Spot market Swaps Trading Participants Regulation Clearing Related areas Banks and banking Finance corporate personal public v t e <span>In finance, an option is a contract which gives the buyer (the owner or holder of the option) the right, but not the obligation, to buy or sell an underlying asset or instrument at a specified strike price on a specified date, depending on the form of the option. The strike price may be set by reference to the spot price (market price) of the underlying security or commodity on the day an option is taken out, or it may be fixed at a discount or

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

An option that conveys to the owner the right to buy at a specific price is referred to as a call; an option that conveys the right of the owner to sell at a specific price is referred to as a put. Both are commonly traded, but the call option is more frequently discussed. <

or commodity on the day an option is taken out, or it may be fixed at a discount or at a premium. The seller has the corresponding obligation to fulfill the transaction – to sell or buy – if the buyer (owner) "exercises" the option. <span>An option that conveys to the owner the right to buy at a specific price is referred to as a call; an option that conveys the right of the owner to sell at a specific price is referred to as a put. Both are commonly traded, but the call option is more frequently discussed. The seller may grant an option to a buyer as part of another transaction, such as a share issue or as part of an employee incentive scheme, otherwise a buyer would pay a premium to th

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

An option that conveys to the owner the right to buy at a specific price is referred to as a call; an option that conveys the right of the owner to sell at a specific price is referred to as a put. Both are commonly traded, but the call option is more frequently discussed. <html>

or commodity on the day an option is taken out, or it may be fixed at a discount or at a premium. The seller has the corresponding obligation to fulfill the transaction – to sell or buy – if the buyer (owner) "exercises" the option. <span>An option that conveys to the owner the right to buy at a specific price is referred to as a call; an option that conveys the right of the owner to sell at a specific price is referred to as a put. Both are commonly traded, but the call option is more frequently discussed. The seller may grant an option to a buyer as part of another transaction, such as a share issue or as part of an employee incentive scheme, otherwise a buyer would pay a premium to th

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

An option that conveys to the owner the right to buy at a specific price is referred to as a call; an option that conveys the right of the owner to sell at a specific price is referred to as a put. Both are commonly traded, but <span>the call option is more frequently discussed. <span><body><html>

or commodity on the day an option is taken out, or it may be fixed at a discount or at a premium. The seller has the corresponding obligation to fulfill the transaction – to sell or buy – if the buyer (owner) "exercises" the option. <span>An option that conveys to the owner the right to buy at a specific price is referred to as a call; an option that conveys the right of the owner to sell at a specific price is referred to as a put. Both are commonly traded, but the call option is more frequently discussed. The seller may grant an option to a buyer as part of another transaction, such as a share issue or as part of an employee incentive scheme, otherwise a buyer would pay a premium to th

status | not read | reprioritisations | ||
---|---|---|---|---|

last reprioritisation on | reading queue position [%] | |||

started reading on | finished reading on |

Black–Scholes model - Wikipedia Black–Scholes model From Wikipedia, the free encyclopedia (Redirected from Black–Scholes) Jump to: navigation, search The Black–Scholes /ˌblæk ˈʃoʊlz/ [1] or Black–Scholes–Merton model is a mathematical model of a financial market containing derivative investment instruments. From the partial differential equation in the model, known as the Black–Scholes equation, one can deduce the Black–Scholes formula, which gives a theoretical estimate of the price of European-style options and shows that the option has a unique price regardless of the risk of the security and its expected return (instead replacing the security's expected return with the risk-neutral rate). The formula led to a boom in options trading and provided mathematical legitimacy to the activities of the Chicago Board Options Exchange and other options markets around the world. [2]

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

The Black–Scholes / ˌ b l æ k ˈ ʃ oʊ l z / [1] or Black–Scholes–Merton model is a mathematical model of a financial market containing derivative investment instruments. From the partial differential equation in the model, known as the Black–Scholes equation, one can deduce the Black–Scholes formula, which gives a theoretical estimate of the price of E

Black–Scholes model - Wikipedia Black–Scholes model From Wikipedia, the free encyclopedia (Redirected from Black–Scholes) Jump to: navigation, search The Black–Scholes /ˌblæk ˈʃoʊlz/ [1] or Black–Scholes–Merton model is a mathematical model of a financial market containing derivative investment instruments. From the partial differential equation in the model, known as the Black–Scholes equation, one can deduce the Black–Scholes formula, which gives a theoretical estimate of the price of European-style options and shows that the option has a unique price regardless of the risk of the security and its expected return (instead replacing the security's expected return with the risk-neutral rate). The formula led to a boom in options trading and provided mathematical legitimacy to the activities of the Chicago Board Options Exchange and other options markets around the world. [2]

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

The Black–Scholes / ˌ b l æ k ˈ ʃ oʊ l z / [1] or Black–Scholes–Merton model is a mathematical model of a financial market containing derivative investment instruments. From the partial differential equation in the model, known as the Black–Scholes equation, one can deduce the Black–Scholes formula, which gives a theoretical estimate of the price of European-style options and shows that the option has a

Black–Scholes model - Wikipedia Black–Scholes model From Wikipedia, the free encyclopedia (Redirected from Black–Scholes) Jump to: navigation, search The Black–Scholes /ˌblæk ˈʃoʊlz/ [1] or Black–Scholes–Merton model is a mathematical model of a financial market containing derivative investment instruments. From the partial differential equation in the model, known as the Black–Scholes equation, one can deduce the Black–Scholes formula, which gives a theoretical estimate of the price of European-style options and shows that the option has a unique price regardless of the risk of the security and its expected return (instead replacing the security's expected return with the risk-neutral rate). The formula led to a boom in options trading and provided mathematical legitimacy to the activities of the Chicago Board Options Exchange and other options markets around the world. [2]

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

is a mathematical model of a financial market containing derivative investment instruments. From the partial differential equation in the model, known as the Black–Scholes equation, one can deduce the Black–Scholes formula, which gives <span>a theoretical estimate of the price of European-style options and shows that the option has a unique price regardless of the risk of the security and its expected return (instead replacing the security's expected return with the risk-neutral rate)

Black–Scholes model - Wikipedia Black–Scholes model From Wikipedia, the free encyclopedia (Redirected from Black–Scholes) Jump to: navigation, search The Black–Scholes /ˌblæk ˈʃoʊlz/ [1] or Black–Scholes–Merton model is a mathematical model of a financial market containing derivative investment instruments. From the partial differential equation in the model, known as the Black–Scholes equation, one can deduce the Black–Scholes formula, which gives a theoretical estimate of the price of European-style options and shows that the option has a unique price regardless of the risk of the security and its expected return (instead replacing the security's expected return with the risk-neutral rate). The formula led to a boom in options trading and provided mathematical legitimacy to the activities of the Chicago Board Options Exchange and other options markets around the world. [2]

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

nt instruments. From the partial differential equation in the model, known as the Black–Scholes equation, one can deduce the Black–Scholes formula, which gives a theoretical estimate of the price of European-style options and shows that <span>the option has a unique price regardless of the risk of the security and its expected return (instead replacing the security's expected return with the risk-neutral rate). <span><body><html>

Black–Scholes model - Wikipedia Black–Scholes model From Wikipedia, the free encyclopedia (Redirected from Black–Scholes) Jump to: navigation, search The Black–Scholes /ˌblæk ˈʃoʊlz/ [1] or Black–Scholes–Merton model is a mathematical model of a financial market containing derivative investment instruments. From the partial differential equation in the model, known as the Black–Scholes equation, one can deduce the Black–Scholes formula, which gives a theoretical estimate of the price of European-style options and shows that the option has a unique price regardless of the risk of the security and its expected return (instead replacing the security's expected return with the risk-neutral rate). The formula led to a boom in options trading and provided mathematical legitimacy to the activities of the Chicago Board Options Exchange and other options markets around the world. [2]

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

rential equation in the model, known as the Black–Scholes equation, one can deduce the Black–Scholes formula, which gives a theoretical estimate of the price of European-style options and shows that the option has a unique price regardless of <span>the risk of the security and its expected return (instead replacing the security's expected return with the risk-neutral rate). <span><body><html>

Black–Scholes model - Wikipedia Black–Scholes model From Wikipedia, the free encyclopedia (Redirected from Black–Scholes) Jump to: navigation, search The Black–Scholes /ˌblæk ˈʃoʊlz/ [1] or Black–Scholes–Merton model is a mathematical model of a financial market containing derivative investment instruments. From the partial differential equation in the model, known as the Black–Scholes equation, one can deduce the Black–Scholes formula, which gives a theoretical estimate of the price of European-style options and shows that the option has a unique price regardless of the risk of the security and its expected return (instead replacing the security's expected return with the risk-neutral rate). The formula led to a boom in options trading and provided mathematical legitimacy to the activities of the Chicago Board Options Exchange and other options markets around the world. [2]

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

mula, which gives a theoretical estimate of the price of European-style options and shows that the option has a unique price regardless of the risk of the security and its expected return (instead replacing the security's expected return with <span>the risk-neutral rate). <span><body><html>

Black–Scholes model - Wikipedia Black–Scholes model From Wikipedia, the free encyclopedia (Redirected from Black–Scholes) Jump to: navigation, search The Black–Scholes /ˌblæk ˈʃoʊlz/ [1] or Black–Scholes–Merton model is a mathematical model of a financial market containing derivative investment instruments. From the partial differential equation in the model, known as the Black–Scholes equation, one can deduce the Black–Scholes formula, which gives a theoretical estimate of the price of European-style options and shows that the option has a unique price regardless of the risk of the security and its expected return (instead replacing the security's expected return with the risk-neutral rate). The formula led to a boom in options trading and provided mathematical legitimacy to the activities of the Chicago Board Options Exchange and other options markets around the world. [2]

status | not read | reprioritisations | ||
---|---|---|---|---|

last reprioritisation on | reading queue position [%] | |||

started reading on | finished reading on |

h For the martingale betting strategy, see martingale (betting system). [imagelink] Stopped Brownian motion is an example of a martingale. It can model an even coin-toss betting game with the possibility of bankruptcy. <span>In probability theory, a martingale is a sequence of random variables (i.e., a stochastic process) for which, at a particular time in the realized sequence, the expectation of the next value in the sequence is equal to the present observed value even given knowledge of all prior observed values. Contents [hide] 1 History 2 Definitions 2.1 Martingale sequences with respect to another sequence 2.2 General definition 3 Examples of martingales 4 Submartingales, super

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

In probability theory, a martingale is a sequence of random variables (i.e., a stochastic process) for which, at a particular time in the realized sequence, the expectation of the next value in the sequence is equal to th

h For the martingale betting strategy, see martingale (betting system). [imagelink] Stopped Brownian motion is an example of a martingale. It can model an even coin-toss betting game with the possibility of bankruptcy. <span>In probability theory, a martingale is a sequence of random variables (i.e., a stochastic process) for which, at a particular time in the realized sequence, the expectation of the next value in the sequence is equal to the present observed value even given knowledge of all prior observed values. Contents [hide] 1 History 2 Definitions 2.1 Martingale sequences with respect to another sequence 2.2 General definition 3 Examples of martingales 4 Submartingales, super

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

In probability theory, a martingale is a sequence of random variables (i.e., a stochastic process) for which, at a particular time in the realized sequence, the expectation of the next value in the sequence is equal to the present observed value even given knowledge of all prior obse

h For the martingale betting strategy, see martingale (betting system). [imagelink] Stopped Brownian motion is an example of a martingale. It can model an even coin-toss betting game with the possibility of bankruptcy. <span>In probability theory, a martingale is a sequence of random variables (i.e., a stochastic process) for which, at a particular time in the realized sequence, the expectation of the next value in the sequence is equal to the present observed value even given knowledge of all prior observed values. Contents [hide] 1 History 2 Definitions 2.1 Martingale sequences with respect to another sequence 2.2 General definition 3 Examples of martingales 4 Submartingales, super

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

In probability theory, a martingale is a sequence of random variables (i.e., a stochastic process) for which, at a particular time in the realized sequence, the expectation of the next value in the sequence is equal to the present observed value even given knowledge of all prior observed values.

h For the martingale betting strategy, see martingale (betting system). [imagelink] Stopped Brownian motion is an example of a martingale. It can model an even coin-toss betting game with the possibility of bankruptcy. <span>In probability theory, a martingale is a sequence of random variables (i.e., a stochastic process) for which, at a particular time in the realized sequence, the expectation of the next value in the sequence is equal to the present observed value even given knowledge of all prior observed values. Contents [hide] 1 History 2 Definitions 2.1 Martingale sequences with respect to another sequence 2.2 General definition 3 Examples of martingales 4 Submartingales, super

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

In probability theory, a martingale is a sequence of random variables (i.e., a stochastic process) for which, at a particular time in the realized sequence, the expectation of the next value in the sequence is equal to the present observed value even given knowledge of all prior observed values. <body><html>

h For the martingale betting strategy, see martingale (betting system). [imagelink] Stopped Brownian motion is an example of a martingale. It can model an even coin-toss betting game with the possibility of bankruptcy. <span>In probability theory, a martingale is a sequence of random variables (i.e., a stochastic process) for which, at a particular time in the realized sequence, the expectation of the next value in the sequence is equal to the present observed value even given knowledge of all prior observed values. Contents [hide] 1 History 2 Definitions 2.1 Martingale sequences with respect to another sequence 2.2 General definition 3 Examples of martingales 4 Submartingales, super

status | not read | reprioritisations | ||
---|---|---|---|---|

last reprioritisation on | reading queue position [%] | |||

started reading on | finished reading on |

Brownian motion 4.3 Time change 4.4 Change of measure 4.5 Complex-valued Wiener process 4.5.1 Self-similarity 4.5.2 Time change 5 See also 6 Notes 7 References 8 External links Characterisations of the Wiener process[edit source] <span>The Wiener process W t {\displaystyle W_{t}} is characterised by the following properties: [1] W 0 = 0 {\displaystyle W_{0}=0} a.s. W {\displaystyle W} has independent increments: for every t > 0 , {\displaystyle t>0,} the future increments W t + u − W t , {\displaystyle W_{t+u}-W_{t},} u ≥ 0 , {\displaystyle u\geq 0,} , are independent of the past values W s {\displaystyle W_{s}} , s ≤ t . {\displaystyle s\leq t.} W {\displaystyle W} has Gaussian increments: W t + u − W t {\displaystyle W_{t+u}-W_{t}} is normally distributed with mean 0 {\displaystyle 0} and variance u {\displaystyle u} , W t + u − W t ∼ N ( 0 , u ) . {\displaystyle W_{t+u}-W_{t}\sim {\mathcal {N}}(0,u).} W {\displaystyle W} has continuous paths: With probability 1 {\displaystyle 1} , W t {\displaystyle W_{t}} is continuous in t {\displaystyle t} . The independent increments means that if 0 ≤ s 1 < t 1 ≤ s 2 < t 2 then W t 1 −W s 1 and W t 2 −W s 2 are independent random variables, and the similar condition holds for

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

The Wiener process is characterised by the following properties: [1] a.s. has independent increments: for every the future increments , are independent of the past values , has Gaussian increments: is normally distributed with mean and variance ,

Brownian motion 4.3 Time change 4.4 Change of measure 4.5 Complex-valued Wiener process 4.5.1 Self-similarity 4.5.2 Time change 5 See also 6 Notes 7 References 8 External links Characterisations of the Wiener process[edit source] <span>The Wiener process W t {\displaystyle W_{t}} is characterised by the following properties: [1] W 0 = 0 {\displaystyle W_{0}=0} a.s. W {\displaystyle W} has independent increments: for every t > 0 , {\displaystyle t>0,} the future increments W t + u − W t , {\displaystyle W_{t+u}-W_{t},} u ≥ 0 , {\displaystyle u\geq 0,} , are independent of the past values W s {\displaystyle W_{s}} , s ≤ t . {\displaystyle s\leq t.} W {\displaystyle W} has Gaussian increments: W t + u − W t {\displaystyle W_{t+u}-W_{t}} is normally distributed with mean 0 {\displaystyle 0} and variance u {\displaystyle u} , W t + u − W t ∼ N ( 0 , u ) . {\displaystyle W_{t+u}-W_{t}\sim {\mathcal {N}}(0,u).} W {\displaystyle W} has continuous paths: With probability 1 {\displaystyle 1} , W t {\displaystyle W_{t}} is continuous in t {\displaystyle t} . The independent increments means that if 0 ≤ s 1 < t 1 ≤ s 2 < t 2 then W t 1 −W s 1 and W t 2 −W s 2 are independent random variables, and the similar condition holds for

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

The Wiener process is characterised by the following properties: [1] a.s. has independent increments: for every the future increments , are independent of the past values , has Gaussian increments: is normally distributed with mean and variance , has continuous paths: With

Brownian motion 4.3 Time change 4.4 Change of measure 4.5 Complex-valued Wiener process 4.5.1 Self-similarity 4.5.2 Time change 5 See also 6 Notes 7 References 8 External links Characterisations of the Wiener process[edit source] <span>The Wiener process W t {\displaystyle W_{t}} is characterised by the following properties: [1] W 0 = 0 {\displaystyle W_{0}=0} a.s. W {\displaystyle W} has independent increments: for every t > 0 , {\displaystyle t>0,} the future increments W t + u − W t , {\displaystyle W_{t+u}-W_{t},} u ≥ 0 , {\displaystyle u\geq 0,} , are independent of the past values W s {\displaystyle W_{s}} , s ≤ t . {\displaystyle s\leq t.} W {\displaystyle W} has Gaussian increments: W t + u − W t {\displaystyle W_{t+u}-W_{t}} is normally distributed with mean 0 {\displaystyle 0} and variance u {\displaystyle u} , W t + u − W t ∼ N ( 0 , u ) . {\displaystyle W_{t+u}-W_{t}\sim {\mathcal {N}}(0,u).} W {\displaystyle W} has continuous paths: With probability 1 {\displaystyle 1} , W t {\displaystyle W_{t}} is continuous in t {\displaystyle t} . The independent increments means that if 0 ≤ s 1 < t 1 ≤ s 2 < t 2 then W t 1 −W s 1 and W t 2 −W s 2 are independent random variables, and the similar condition holds for

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

The Wiener process is characterised by the following properties: [1] a.s. has independent increments: for every the future increments , are independent of the past values , has Gaussian increments: is normally distributed with mean and variance , has continuous paths: With probability , is continuous in .

Brownian motion 4.3 Time change 4.4 Change of measure 4.5 Complex-valued Wiener process 4.5.1 Self-similarity 4.5.2 Time change 5 See also 6 Notes 7 References 8 External links Characterisations of the Wiener process[edit source] <span>The Wiener process W t {\displaystyle W_{t}} is characterised by the following properties: [1] W 0 = 0 {\displaystyle W_{0}=0} a.s. W {\displaystyle W} has independent increments: for every t > 0 , {\displaystyle t>0,} the future increments W t + u − W t , {\displaystyle W_{t+u}-W_{t},} u ≥ 0 , {\displaystyle u\geq 0,} , are independent of the past values W s {\displaystyle W_{s}} , s ≤ t . {\displaystyle s\leq t.} W {\displaystyle W} has Gaussian increments: W t + u − W t {\displaystyle W_{t+u}-W_{t}} is normally distributed with mean 0 {\displaystyle 0} and variance u {\displaystyle u} , W t + u − W t ∼ N ( 0 , u ) . {\displaystyle W_{t+u}-W_{t}\sim {\mathcal {N}}(0,u).} W {\displaystyle W} has continuous paths: With probability 1 {\displaystyle 1} , W t {\displaystyle W_{t}} is continuous in t {\displaystyle t} . The independent increments means that if 0 ≤ s 1 < t 1 ≤ s 2 < t 2 then W t 1 −W s 1 and W t 2 −W s 2 are independent random variables, and the similar condition holds for

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

ad> The Wiener process is characterised by the following properties: [1] a.s. has independent increments: for every the future increments , are independent of the past values , has Gaussian increments: is normally distributed with mean and variance , has continuous paths: With probability , is continuous in . <html>

Brownian motion 4.3 Time change 4.4 Change of measure 4.5 Complex-valued Wiener process 4.5.1 Self-similarity 4.5.2 Time change 5 See also 6 Notes 7 References 8 External links Characterisations of the Wiener process[edit source] <span>The Wiener process W t {\displaystyle W_{t}} is characterised by the following properties: [1] W 0 = 0 {\displaystyle W_{0}=0} a.s. W {\displaystyle W} has independent increments: for every t > 0 , {\displaystyle t>0,} the future increments W t + u − W t , {\displaystyle W_{t+u}-W_{t},} u ≥ 0 , {\displaystyle u\geq 0,} , are independent of the past values W s {\displaystyle W_{s}} , s ≤ t . {\displaystyle s\leq t.} W {\displaystyle W} has Gaussian increments: W t + u − W t {\displaystyle W_{t+u}-W_{t}} is normally distributed with mean 0 {\displaystyle 0} and variance u {\displaystyle u} , W t + u − W t ∼ N ( 0 , u ) . {\displaystyle W_{t+u}-W_{t}\sim {\mathcal {N}}(0,u).} W {\displaystyle W} has continuous paths: With probability 1 {\displaystyle 1} , W t {\displaystyle W_{t}} is continuous in t {\displaystyle t} . The independent increments means that if 0 ≤ s 1 < t 1 ≤ s 2 < t 2 then W t 1 −W s 1 and W t 2 −W s 2 are independent random variables, and the similar condition holds for

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

r process is characterised by the following properties: [1] a.s. has independent increments: for every the future increments , are independent of the past values , has Gaussian increments: is normally distributed with <span>mean and variance , has continuous paths: With probability , is continuous in . <span><body><html>

Brownian motion 4.3 Time change 4.4 Change of measure 4.5 Complex-valued Wiener process 4.5.1 Self-similarity 4.5.2 Time change 5 See also 6 Notes 7 References 8 External links Characterisations of the Wiener process[edit source] <span>The Wiener process W t {\displaystyle W_{t}} is characterised by the following properties: [1] W 0 = 0 {\displaystyle W_{0}=0} a.s. W {\displaystyle W} has independent increments: for every t > 0 , {\displaystyle t>0,} the future increments W t + u − W t , {\displaystyle W_{t+u}-W_{t},} u ≥ 0 , {\displaystyle u\geq 0,} , are independent of the past values W s {\displaystyle W_{s}} , s ≤ t . {\displaystyle s\leq t.} W {\displaystyle W} has Gaussian increments: W t + u − W t {\displaystyle W_{t+u}-W_{t}} is normally distributed with mean 0 {\displaystyle 0} and variance u {\displaystyle u} , W t + u − W t ∼ N ( 0 , u ) . {\displaystyle W_{t+u}-W_{t}\sim {\mathcal {N}}(0,u).} W {\displaystyle W} has continuous paths: With probability 1 {\displaystyle 1} , W t {\displaystyle W_{t}} is continuous in t {\displaystyle t} . The independent increments means that if 0 ≤ s 1 < t 1 ≤ s 2 < t 2 then W t 1 −W s 1 and W t 2 −W s 2 are independent random variables, and the similar condition holds for

status | not read | reprioritisations | ||
---|---|---|---|---|

last reprioritisation on | reading queue position [%] | |||

started reading on | finished reading on |

translations!] Gauss–Markov process From Wikipedia, the free encyclopedia Jump to: navigation, search Not to be confused with the Gauss–Markov theorem of mathematical statistics. <span>Gauss–Markov stochastic processes (named after Carl Friedrich Gauss and Andrey Markov) are stochastic processes that satisfy the requirements for both Gaussian processes and Markov processes. [1] [2] The stationary Gauss–Markov process (also known as a Ornstein–Uhlenbeck process) is a very special case because it is unique, except for some trivial exceptions. Every Gauss–Markov process X(t) possesses the three following properties: If h(t) is a non-zero scalar function of t, then Z(t) = h(t)X(t) is also a Gauss–Markov process If f(t) is

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

Gauss–Markov stochastic processes (named after Carl Friedrich Gauss and Andrey Markov) are stochastic processes that satisfy the requirements for both Gaussian processes and Markov processes. [1] [2] The stationary Gauss–Markov process (also known as a Ornstein–Uhlenbeck process) is a very special case because it is unique, except for some trivial exceptions. </sp

translations!] Gauss–Markov process From Wikipedia, the free encyclopedia Jump to: navigation, search Not to be confused with the Gauss–Markov theorem of mathematical statistics. <span>Gauss–Markov stochastic processes (named after Carl Friedrich Gauss and Andrey Markov) are stochastic processes that satisfy the requirements for both Gaussian processes and Markov processes. [1] [2] The stationary Gauss–Markov process (also known as a Ornstein–Uhlenbeck process) is a very special case because it is unique, except for some trivial exceptions. Every Gauss–Markov process X(t) possesses the three following properties: If h(t) is a non-zero scalar function of t, then Z(t) = h(t)X(t) is also a Gauss–Markov process If f(t) is

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

kov stochastic processes (named after Carl Friedrich Gauss and Andrey Markov) are stochastic processes that satisfy the requirements for both Gaussian processes and Markov processes. [1] [2] The stationary Gauss–Markov process (also known as <span>a Ornstein–Uhlenbeck process) is a very special case because it is unique, except for some trivial exceptions. <span><body><html>

translations!] Gauss–Markov process From Wikipedia, the free encyclopedia Jump to: navigation, search Not to be confused with the Gauss–Markov theorem of mathematical statistics. <span>Gauss–Markov stochastic processes (named after Carl Friedrich Gauss and Andrey Markov) are stochastic processes that satisfy the requirements for both Gaussian processes and Markov processes. [1] [2] The stationary Gauss–Markov process (also known as a Ornstein–Uhlenbeck process) is a very special case because it is unique, except for some trivial exceptions. Every Gauss–Markov process X(t) possesses the three following properties: If h(t) is a non-zero scalar function of t, then Z(t) = h(t)X(t) is also a Gauss–Markov process If f(t) is

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

Updated May 15, 2017 Although both detrás and atrás are adverbs that can be translated as "behind" and are often listed as synonyms, they tend to be used in different ways. <span>Atrás tends to indicate motion backward, while detrás tends to refer to place, but the distinction isn't always clear. Sometimes the choice of word is a matter of which "sounds better" rather than following some fixed rule. That said, it is probably eas

status | not read | reprioritisations | ||
---|---|---|---|---|

last reprioritisation on | reading queue position [%] | |||

started reading on | finished reading on |

oldest votes up vote 3 down vote accepted <span>Si usted no paga sus deudas, perderá su poder de crédito, por lo tanto [1*], le será más difícil conseguir nuevos ingresos de dinero, por tanto [2*], es de nuestro interés el recordarle que debe pagar sus deudas. 1* Por consiguiente / de ahí en mas 2* Por lo que / entonces Tal como lo has indicado en tu pregunta por lo ~. loc. adv. Por consiguiente, por lo que antes se ha dicho, por el motivo o las razones de que acaba de hablarse. U. t. c. loc. conjunt. por tanto. loc. adv. Por lo que, en atención a lo cual. U. t. c. loc. conjunt. La diferencia es mínima hoy en día, al menos para ámbitos informales. share|improve this answer edited Jul 4 '12 at 16:23 [imagelink] JoulSauron

status | not read | reprioritisations | ||
---|---|---|---|---|

last reprioritisation on | reading queue position [%] | |||

started reading on | finished reading on |

amp;cj=1"> [imagelink] Palabras Homófonas Palabras Parónimas Fonética y fonología Uso Grafía Léxicas Ver más Latinismos Extranjerismos Barbarismos Ultracorrecciones Dudas de uso Delante o adelante Delante significa ‘en la parte anterior’, ‘en frente’ o ‘ante alguien’, se usa por lo general para indicar la situación de alguien o algo. Adelante , por su parte, equivale a ‘más allá’, ‘hacia allá’, o ‘hacia enfrente’, y se emplea para indicar la existencia de un movimiento, sea real o figurado. La forma alante , por otro lado, es incorrecta. Cuándo usar delante Delante es un adverbio de lugar; se emplea con el significado de ‘en la parte anterior’, ‘en frente’ o ‘en presencia de alguien’. Por lo general, es un adverbio que

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

Delante significa ‘en la parte anterior’, ‘en frente’ o ‘ante alguien’, se usa por lo general para indicar la situación de alguien o algo. Adelante , por su parte, equivale a ‘más allá’, ‘hacia allá’, o ‘hacia enfrente’, y se emplea para indicar la existencia de un movimiento, sea real o figurado. La forma alante , por otro lado, es incorrecta.

amp;cj=1"> [imagelink] Palabras Homófonas Palabras Parónimas Fonética y fonología Uso Grafía Léxicas Ver más Latinismos Extranjerismos Barbarismos Ultracorrecciones Dudas de uso Delante o adelante Delante significa ‘en la parte anterior’, ‘en frente’ o ‘ante alguien’, se usa por lo general para indicar la situación de alguien o algo. Adelante , por su parte, equivale a ‘más allá’, ‘hacia allá’, o ‘hacia enfrente’, y se emplea para indicar la existencia de un movimiento, sea real o figurado. La forma alante , por otro lado, es incorrecta. Cuándo usar delante Delante es un adverbio de lugar; se emplea con el significado de ‘en la parte anterior’, ‘en frente’ o ‘en presencia de alguien’. Por lo general, es un adverbio que

status | not read | reprioritisations | ||
---|---|---|---|---|

last reprioritisation on | reading queue position [%] | |||

started reading on | finished reading on |

France, french <span>Tu pregunta es difícil, Cristina, porque los tres términos son casi sinónimos y en la mayoría de los casos son intercambiables. Pero tomando muchos riesgos, te doy los matices que "siento": Lograr algo difícil. Conseguir algo raro. Alcanzar algo lejano y muy alto. Pero estoy seguro que habrá otros foristas que no los "sentirán" como yo. Esperemos otras opiniones. lpfr, Nov 3, 2007 #2

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

ead> Tu pregunta es difícil, Cristina, porque los tres términos son casi sinónimos y en la mayoría de los casos son intercambiables. Pero tomando muchos riesgos, te doy los matices que "siento": Lograr algo difícil. Conseguir algo raro. Alcanzar algo lejano y muy alto. Pero estoy seguro que habrá otros foristas que no los "sentirán" como yo. Esperemos otras opiniones. <html>

France, french <span>Tu pregunta es difícil, Cristina, porque los tres términos son casi sinónimos y en la mayoría de los casos son intercambiables. Pero tomando muchos riesgos, te doy los matices que "siento": Lograr algo difícil. Conseguir algo raro. Alcanzar algo lejano y muy alto. Pero estoy seguro que habrá otros foristas que no los "sentirán" como yo. Esperemos otras opiniones. lpfr, Nov 3, 2007 #2

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

2 ) {\displaystyle K_{\operatorname {SE} }(x,x')=\exp {\Big (}-{\frac {\|d\|^{2}}{2\ell ^{2}}}{\Big )}} <span>Ornstein–Uhlenbeck: K OU ( x , x ′ ) = exp ( − | d | ℓ ) {\displaystyle K_{\operatorname {OU} }(x,x')=\exp \left(-{\frac {|d|}{\ell }}\right)} Matérn: K Matern ( x , x ′ )

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

{\displaystyle K_{\operatorname {Matern} }(x,x')={\frac {2^{1-\nu }}{\Gamma (\nu )}}{\Big (}{\frac {{\sqrt {2\nu }}|d|}{\ell }}{\Big )}^{\nu }K_{\nu }{\Big (}{\frac {{\sqrt {2\nu }}|d|}{\ell }}{\Big )}} <span>Periodic: K P ( x , x ′ ) = exp ( − 2 sin 2 ( d 2 ) ℓ 2 ) {\displaystyle K_{\operatorname {P} }(x,x')=\exp \left(-{\frac {2\sin ^{2}\left({\frac {d}{2}}\right)}{\ell ^{2}}}\right)} Rational quadratic: K RQ ( x , x ′

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

2 ) {\displaystyle K_{\operatorname {P} }(x,x')=\exp \left(-{\frac {2\sin ^{2}\left({\frac {d}{2}}\right)}{\ell ^{2}}}\right)} <span>Rational quadratic: K RQ ( x , x ′ ) = ( 1 + | d | 2 ) − α , α ≥ 0 {\displaystyle K_{\operatorname {RQ} }(x,x')=(1+|d|^{2})^{-\alpha },\quad \alpha \geq 0} Here d = x − x ′ {\displaystyle d=x-x'} . The parameter ℓ is the character

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

status | not read | reprioritisations | ||
---|---|---|---|---|

last reprioritisation on | reading queue position [%] | |||

started reading on | finished reading on |