Edited, memorised or added to reading list

on 11-Jan-2018 (Thu)

Do you want BuboFlash to help you learning these things? Click here to log in or create user.

#linear-algebra

In mathematics, a linear map (also called a linear mapping, linear transformation or, in some contexts, linear function) is a mapping VW between two modules (including vector spaces) that preserves (in the sense defined below) the operations of addition and scalar multiplication.

statusnot read reprioritisations
last reprioritisation on reading queue position [%]
started reading on finished reading on

Linear map - Wikipedia
Linear operator) Jump to: navigation, search "Linear transformation" redirects here. For fractional linear transformations, see Möbius transformation. Not to be confused with linear function. <span>In mathematics, a linear map (also called a linear mapping, linear transformation or, in some contexts, linear function) is a mapping V → W between two modules (including vector spaces) that preserves (in the sense defined below) the operations of addition and scalar multiplication. An important special case is when V = W, in which case the map is called a linear operator, [1] or an endomorphism of V. Sometimes the term linear function has the same meaning as li




Flashcard 1731637415180

Tags
#linear-algebra
Question
An important special case (of linear mapping) is when V = W , in which case the map is called a [...] ,[1] or an endomorphism of V .
Answer
linear operator


statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill
Linear map - Wikipedia
linear mapping, linear transformation or, in some contexts, linear function) is a mapping V → W between two modules (including vector spaces) that preserves (in the sense defined below) the operations of addition and scalar multiplication. <span>An important special case is when V = W, in which case the map is called a linear operator, [1] or an endomorphism of V. Sometimes the term linear function has the same meaning as linear map, while in analytic geometry it does not. A linear map always maps linear subspaces onto linear subspaces (possibl







Flashcard 1731639774476

Tags
#linear-algebra
Question

a linear map is a mapping VW that preserves the operations of [...].

Answer
addition and scalar multiplication


statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Parent (intermediate) annotation

Open it
thematics, a linear map (also called a linear mapping, linear transformation or, in some contexts, linear function) is a mapping V → W between two modules (including vector spaces) that preserves (in the sense defined below) the operations of <span>addition and scalar multiplication. <span><body><html>

Original toplevel document

Linear map - Wikipedia
Linear operator) Jump to: navigation, search "Linear transformation" redirects here. For fractional linear transformations, see Möbius transformation. Not to be confused with linear function. <span>In mathematics, a linear map (also called a linear mapping, linear transformation or, in some contexts, linear function) is a mapping V → W between two modules (including vector spaces) that preserves (in the sense defined below) the operations of addition and scalar multiplication. An important special case is when V = W, in which case the map is called a linear operator, [1] or an endomorphism of V. Sometimes the term linear function has the same meaning as li







#matrices #spectral-theorem
In mathematics, particularly linear algebra and functional analysis, a spectral theorem is a result about when a linear operator or matrix can be diagonalized (that is, represented as a diagonal matrix in some basis).

statusnot read reprioritisations
last reprioritisation on reading queue position [%]
started reading on finished reading on

Spectral theorem - Wikipedia
for more information. [imagelink] [Help with translations!] Spectral theorem From Wikipedia, the free encyclopedia Jump to: navigation, search <span>In mathematics, particularly linear algebra and functional analysis, a spectral theorem is a result about when a linear operator or matrix can be diagonalized (that is, represented as a diagonal matrix in some basis). This is extremely useful because computations involving a diagonalizable matrix can often be reduced to much simpler computations involving the corresponding diagonal matrix. The concep




Flashcard 1731644755212

Tags
#matrices #spectral-theorem
Question
[...] is a result about when a linear operator or matrix can be diagonalized
Answer
spectral theorem


statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Parent (intermediate) annotation

Open it
In mathematics, particularly linear algebra and functional analysis, a spectral theorem is a result about when a linear operator or matrix can be diagonalized (that is, represented as a diagonal matrix in some basis).

Original toplevel document

Spectral theorem - Wikipedia
for more information. [imagelink] [Help with translations!] Spectral theorem From Wikipedia, the free encyclopedia Jump to: navigation, search <span>In mathematics, particularly linear algebra and functional analysis, a spectral theorem is a result about when a linear operator or matrix can be diagonalized (that is, represented as a diagonal matrix in some basis). This is extremely useful because computations involving a diagonalizable matrix can often be reduced to much simpler computations involving the corresponding diagonal matrix. The concep







#computer-science #mathematics
In mathematics and computer science, a canonical, normal, or standard form of a mathematical object is a standard way of presenting that object as a mathematical expression.

statusnot read reprioritisations
last reprioritisation on reading queue position [%]
started reading on finished reading on

Canonical form - Wikipedia
strings " madam curie " and " radium came " are given as C arrays. Each one is converted into a canonical form by sorting. Since both sorted strings literally agree, the original strings were anagrams of each other. <span>In mathematics and computer science, a canonical, normal, or standard form of a mathematical object is a standard way of presenting that object as a mathematical expression. The distinction between "canonical" and "normal" forms varies by subfield. In most fields, a canonical form specifies a unique representation for every object, while




Flashcard 1731649735948

Tags
#computer-science #mathematics
Question
a [...] form of a mathematical object is a standard way of presenting that object as a mathematical expression.
Answer
canonical, normal, or standard form


statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Parent (intermediate) annotation

Open it
In mathematics and computer science, a canonical, normal, or standard form of a mathematical object is a standard way of presenting that object as a mathematical expression.

Original toplevel document

Canonical form - Wikipedia
strings " madam curie " and " radium came " are given as C arrays. Each one is converted into a canonical form by sorting. Since both sorted strings literally agree, the original strings were anagrams of each other. <span>In mathematics and computer science, a canonical, normal, or standard form of a mathematical object is a standard way of presenting that object as a mathematical expression. The distinction between "canonical" and "normal" forms varies by subfield. In most fields, a canonical form specifies a unique representation for every object, while







#dynamic-programming
In computing, memoization or memoisation is an optimization technique used primarily to speed up computer programs by storing the results of expensive function calls and returning the cached result when the same inputs occur again.

statusnot read reprioritisations
last reprioritisation on reading queue position [%]
started reading on finished reading on

Memoization - Wikipedia
dia, the free encyclopedia Jump to: navigation, search Not to be confused with Memorization. "Tabling" redirects here. For the parliamentary procedure, see Table (parliamentary procedure). <span>In computing, memoization or memoisation is an optimization technique used primarily to speed up computer programs by storing the results of expensive function calls and returning the cached result when the same inputs occur again. Memoization has also been used in other contexts (and for purposes other than speed gains), such as in simple mutually recursive descent parsing [1] . Although related to caching, memoi




Flashcard 1731663629580

Tags
#dynamic-programming
Question
[...] speeds up computer programs by storing the results of expensive function calls and returning the cached result when the same inputs occur again.
Answer
memoization


statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Parent (intermediate) annotation

Open it
In computing, memoization or memoisation is an optimization technique used primarily to speed up computer programs by storing the results of expensive function calls and returning the cached result when the same inputs occur a

Original toplevel document

Memoization - Wikipedia
dia, the free encyclopedia Jump to: navigation, search Not to be confused with Memorization. "Tabling" redirects here. For the parliamentary procedure, see Table (parliamentary procedure). <span>In computing, memoization or memoisation is an optimization technique used primarily to speed up computer programs by storing the results of expensive function calls and returning the cached result when the same inputs occur again. Memoization has also been used in other contexts (and for purposes other than speed gains), such as in simple mutually recursive descent parsing [1] . Although related to caching, memoi







Flashcard 1731665202444

Tags
#dynamic-programming
Question
memoization saves [...] by storing the results of expensive function calls and returning the cached result when the same inputs occur again.
Answer
computational time


statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Parent (intermediate) annotation

Open it
In computing, memoization or memoisation is an optimization technique used primarily to speed up computer programs by storing the results of expensive function calls and returning the cached result when the same inputs occur again.

Original toplevel document

Memoization - Wikipedia
dia, the free encyclopedia Jump to: navigation, search Not to be confused with Memorization. "Tabling" redirects here. For the parliamentary procedure, see Table (parliamentary procedure). <span>In computing, memoization or memoisation is an optimization technique used primarily to speed up computer programs by storing the results of expensive function calls and returning the cached result when the same inputs occur again. Memoization has also been used in other contexts (and for purposes other than speed gains), such as in simple mutually recursive descent parsing [1] . Although related to caching, memoi







Flashcard 1731666775308

Tags
#dynamic-programming
Question
memoization speeds up computer programs by storing [...] and returning the cached result when the same inputs occur again.
Answer
results of expensive function calls


statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Parent (intermediate) annotation

Open it
In computing, memoization or memoisation is an optimization technique used primarily to speed up computer programs by storing the results of expensive function calls and returning the cached result when the same inputs occur again.

Original toplevel document

Memoization - Wikipedia
dia, the free encyclopedia Jump to: navigation, search Not to be confused with Memorization. "Tabling" redirects here. For the parliamentary procedure, see Table (parliamentary procedure). <span>In computing, memoization or memoisation is an optimization technique used primarily to speed up computer programs by storing the results of expensive function calls and returning the cached result when the same inputs occur again. Memoization has also been used in other contexts (and for purposes other than speed gains), such as in simple mutually recursive descent parsing [1] . Although related to caching, memoi







#dynamic-programming
In computer science, mathematics, management science, economics and bioinformatics, dynamic programming (also known as dynamic optimization) is a method for solving a complex problem by
  1. breaking it down into a collection of simpler subproblems,
  2. solving each of those subproblems just once, and
  3. storing their solutions.
The next time the same subproblem occurs, instead of recomputing its solution, one simply looks up the previously computed solution, thereby saving computation time at the expense of a (hopefully) modest expenditure in storage space.
(Each of the subproblem solutions is indexed in some way, typically based on the values of its input parameters, so as to facilitate its lookup.)

statusnot read reprioritisations
last reprioritisation on reading queue position [%]
started reading on finished reading on

Dynamic programming - Wikipedia
This article's factual accuracy is disputed. Relevant discussion may be found on the talk page. Please help to ensure that disputed statements are reliably sourced. (November 2015) (Learn how and when to remove this template message) <span>In computer science, mathematics, management science, economics and bioinformatics, dynamic programming (also known as dynamic optimization) is a method for solving a complex problem by breaking it down into a collection of simpler subproblems, solving each of those subproblems just once, and storing their solutions. The next time the same subproblem occurs, instead of recomputing its solution, one simply looks up the previously computed solution, thereby saving computation time at the expense of a (hopefully) modest expenditure in storage space. (Each of the subproblem solutions is indexed in some way, typically based on the values of its input parameters, so as to facilitate its lookup.) The technique of storing solutions to subproblems instead of recomputing them is called "memoization". Dynamic programming algorithms are often used for optimization. A dyna




Flashcard 1731673328908

Tags
#dynamic-programming
Question
The first step in dynamic programming it to [...]
Answer
break the problem down into a collection of simpler subproblems


statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Parent (intermediate) annotation

Open it
head><head> In computer science, mathematics, management science, economics and bioinformatics, dynamic programming (also known as dynamic optimization) is a method for solving a complex problem by breaking it down into a collection of simpler subproblems, solving each of those subproblems just once, and storing their solutions. The next time the same subproblem occurs, instead of recomputing its solution, one simply looks up the p

Original toplevel document

Dynamic programming - Wikipedia
This article's factual accuracy is disputed. Relevant discussion may be found on the talk page. Please help to ensure that disputed statements are reliably sourced. (November 2015) (Learn how and when to remove this template message) <span>In computer science, mathematics, management science, economics and bioinformatics, dynamic programming (also known as dynamic optimization) is a method for solving a complex problem by breaking it down into a collection of simpler subproblems, solving each of those subproblems just once, and storing their solutions. The next time the same subproblem occurs, instead of recomputing its solution, one simply looks up the previously computed solution, thereby saving computation time at the expense of a (hopefully) modest expenditure in storage space. (Each of the subproblem solutions is indexed in some way, typically based on the values of its input parameters, so as to facilitate its lookup.) The technique of storing solutions to subproblems instead of recomputing them is called "memoization". Dynamic programming algorithms are often used for optimization. A dyna







Flashcard 1731674901772

Tags
#dynamic-programming
Question
dynamic programming aims to solve each subproblems [...] and storing their solutions.
Answer
just once


statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Parent (intermediate) annotation

Open it
ter science, mathematics, management science, economics and bioinformatics, dynamic programming (also known as dynamic optimization) is a method for solving a complex problem by breaking it down into a collection of simpler subproblems, <span>solving each of those subproblems just once, and storing their solutions. The next time the same subproblem occurs, instead of recomputing its solution, one simply looks up the previously computed solution, thereby saving c

Original toplevel document

Dynamic programming - Wikipedia
This article's factual accuracy is disputed. Relevant discussion may be found on the talk page. Please help to ensure that disputed statements are reliably sourced. (November 2015) (Learn how and when to remove this template message) <span>In computer science, mathematics, management science, economics and bioinformatics, dynamic programming (also known as dynamic optimization) is a method for solving a complex problem by breaking it down into a collection of simpler subproblems, solving each of those subproblems just once, and storing their solutions. The next time the same subproblem occurs, instead of recomputing its solution, one simply looks up the previously computed solution, thereby saving computation time at the expense of a (hopefully) modest expenditure in storage space. (Each of the subproblem solutions is indexed in some way, typically based on the values of its input parameters, so as to facilitate its lookup.) The technique of storing solutions to subproblems instead of recomputing them is called "memoization". Dynamic programming algorithms are often used for optimization. A dyna







Flashcard 1731676474636

Tags
#dynamic-programming
Question
dynamic programming solves each of the subproblems just once, and [...].
Answer
storing their solutions


statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Parent (intermediate) annotation

Open it
nomics and bioinformatics, dynamic programming (also known as dynamic optimization) is a method for solving a complex problem by breaking it down into a collection of simpler subproblems, solving each of those subproblems just once, and <span>storing their solutions. The next time the same subproblem occurs, instead of recomputing its solution, one simply looks up the previously computed solution, thereby saving computation time at the expens

Original toplevel document

Dynamic programming - Wikipedia
This article's factual accuracy is disputed. Relevant discussion may be found on the talk page. Please help to ensure that disputed statements are reliably sourced. (November 2015) (Learn how and when to remove this template message) <span>In computer science, mathematics, management science, economics and bioinformatics, dynamic programming (also known as dynamic optimization) is a method for solving a complex problem by breaking it down into a collection of simpler subproblems, solving each of those subproblems just once, and storing their solutions. The next time the same subproblem occurs, instead of recomputing its solution, one simply looks up the previously computed solution, thereby saving computation time at the expense of a (hopefully) modest expenditure in storage space. (Each of the subproblem solutions is indexed in some way, typically based on the values of its input parameters, so as to facilitate its lookup.) The technique of storing solutions to subproblems instead of recomputing them is called "memoization". Dynamic programming algorithms are often used for optimization. A dyna







Flashcard 1731678047500

Tags
#dynamic-programming
Question
In dynamic programming, when the same subproblem occurs, instead of [...], one simply looks up the previously computed solution
Answer
recomputing its solution


statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Parent (intermediate) annotation

Open it
is a method for solving a complex problem by breaking it down into a collection of simpler subproblems, solving each of those subproblems just once, and storing their solutions. The next time the same subproblem occurs, instead of <span>recomputing its solution, one simply looks up the previously computed solution, thereby saving computation time at the expense of a (hopefully) modest expenditure in storage space. (Each of the subproblem

Original toplevel document

Dynamic programming - Wikipedia
This article's factual accuracy is disputed. Relevant discussion may be found on the talk page. Please help to ensure that disputed statements are reliably sourced. (November 2015) (Learn how and when to remove this template message) <span>In computer science, mathematics, management science, economics and bioinformatics, dynamic programming (also known as dynamic optimization) is a method for solving a complex problem by breaking it down into a collection of simpler subproblems, solving each of those subproblems just once, and storing their solutions. The next time the same subproblem occurs, instead of recomputing its solution, one simply looks up the previously computed solution, thereby saving computation time at the expense of a (hopefully) modest expenditure in storage space. (Each of the subproblem solutions is indexed in some way, typically based on the values of its input parameters, so as to facilitate its lookup.) The technique of storing solutions to subproblems instead of recomputing them is called "memoization". Dynamic programming algorithms are often used for optimization. A dyna







Flashcard 1731679620364

Tags
#dynamic-programming
Question
In dynamic programming, the next time when the same subproblem occurs, instead of recomputing its solution, one simply [...]
Answer
looks up the previously computed solution


statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Parent (intermediate) annotation

Open it
blem by breaking it down into a collection of simpler subproblems, solving each of those subproblems just once, and storing their solutions. The next time the same subproblem occurs, instead of recomputing its solution, one simply <span>looks up the previously computed solution, thereby saving computation time at the expense of a (hopefully) modest expenditure in storage space. (Each of the subproblem solutions is indexed in some way, typically based on t

Original toplevel document

Dynamic programming - Wikipedia
This article's factual accuracy is disputed. Relevant discussion may be found on the talk page. Please help to ensure that disputed statements are reliably sourced. (November 2015) (Learn how and when to remove this template message) <span>In computer science, mathematics, management science, economics and bioinformatics, dynamic programming (also known as dynamic optimization) is a method for solving a complex problem by breaking it down into a collection of simpler subproblems, solving each of those subproblems just once, and storing their solutions. The next time the same subproblem occurs, instead of recomputing its solution, one simply looks up the previously computed solution, thereby saving computation time at the expense of a (hopefully) modest expenditure in storage space. (Each of the subproblem solutions is indexed in some way, typically based on the values of its input parameters, so as to facilitate its lookup.) The technique of storing solutions to subproblems instead of recomputing them is called "memoization". Dynamic programming algorithms are often used for optimization. A dyna







Flashcard 1731681455372

Tags
#dynamic-programming
Question
The purpose of dynamic programming is to [...].
Answer
trade space for time


statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Parent (intermediate) annotation

Open it
simpler subproblems, solving each of those subproblems just once, and storing their solutions. The next time the same subproblem occurs, instead of recomputing its solution, one simply looks up the previously computed solution, thereby <span>saving computation time at the expense of a (hopefully) modest expenditure in storage space. (Each of the subproblem solutions is indexed in some way, typically based on the values of its input parameters, so as to facilitate its lookup.) <span><body><html>

Original toplevel document

Dynamic programming - Wikipedia
This article's factual accuracy is disputed. Relevant discussion may be found on the talk page. Please help to ensure that disputed statements are reliably sourced. (November 2015) (Learn how and when to remove this template message) <span>In computer science, mathematics, management science, economics and bioinformatics, dynamic programming (also known as dynamic optimization) is a method for solving a complex problem by breaking it down into a collection of simpler subproblems, solving each of those subproblems just once, and storing their solutions. The next time the same subproblem occurs, instead of recomputing its solution, one simply looks up the previously computed solution, thereby saving computation time at the expense of a (hopefully) modest expenditure in storage space. (Each of the subproblem solutions is indexed in some way, typically based on the values of its input parameters, so as to facilitate its lookup.) The technique of storing solutions to subproblems instead of recomputing them is called "memoization". Dynamic programming algorithms are often used for optimization. A dyna







Flashcard 1731683028236

Tags
#dynamic-programming
Question
In dynamic programming each of the subproblem solutions is [...], typically based on the values of its input parameters, so as to facilitate its lookup.
Answer
indexed in some way


statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Parent (intermediate) annotation

Open it
occurs, instead of recomputing its solution, one simply looks up the previously computed solution, thereby saving computation time at the expense of a (hopefully) modest expenditure in storage space. (Each of the subproblem solutions is <span>indexed in some way, typically based on the values of its input parameters, so as to facilitate its lookup.) <span><body><html>

Original toplevel document

Dynamic programming - Wikipedia
This article's factual accuracy is disputed. Relevant discussion may be found on the talk page. Please help to ensure that disputed statements are reliably sourced. (November 2015) (Learn how and when to remove this template message) <span>In computer science, mathematics, management science, economics and bioinformatics, dynamic programming (also known as dynamic optimization) is a method for solving a complex problem by breaking it down into a collection of simpler subproblems, solving each of those subproblems just once, and storing their solutions. The next time the same subproblem occurs, instead of recomputing its solution, one simply looks up the previously computed solution, thereby saving computation time at the expense of a (hopefully) modest expenditure in storage space. (Each of the subproblem solutions is indexed in some way, typically based on the values of its input parameters, so as to facilitate its lookup.) The technique of storing solutions to subproblems instead of recomputing them is called "memoization". Dynamic programming algorithms are often used for optimization. A dyna







Flashcard 1731684601100

Tags
#dynamic-programming
Question
subproblem solutions are typically indexed by [...] to facilitate lookup.
Answer
input values


statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Parent (intermediate) annotation

Open it
tion, one simply looks up the previously computed solution, thereby saving computation time at the expense of a (hopefully) modest expenditure in storage space. (Each of the subproblem solutions is indexed in some way, typically based on <span>the values of its input parameters, so as to facilitate its lookup.) <span><body><html>

Original toplevel document

Dynamic programming - Wikipedia
This article's factual accuracy is disputed. Relevant discussion may be found on the talk page. Please help to ensure that disputed statements are reliably sourced. (November 2015) (Learn how and when to remove this template message) <span>In computer science, mathematics, management science, economics and bioinformatics, dynamic programming (also known as dynamic optimization) is a method for solving a complex problem by breaking it down into a collection of simpler subproblems, solving each of those subproblems just once, and storing their solutions. The next time the same subproblem occurs, instead of recomputing its solution, one simply looks up the previously computed solution, thereby saving computation time at the expense of a (hopefully) modest expenditure in storage space. (Each of the subproblem solutions is indexed in some way, typically based on the values of its input parameters, so as to facilitate its lookup.) The technique of storing solutions to subproblems instead of recomputing them is called "memoization". Dynamic programming algorithms are often used for optimization. A dyna







#finance
In finance, an option is a contract which gives the buyer (the owner or holder of the option) the right, but not the obligation, to buy or sell an underlying asset or instrument at a specified strike price on a specified date, depending on the form of the option.

statusnot read reprioritisations
last reprioritisation on reading queue position [%]
started reading on finished reading on

Option (finance) - Wikipedia
y Real estate Reinsurance Over-the-counter (off-exchange) Forwards Options Spot market Swaps Trading Participants Regulation Clearing Related areas Banks and banking Finance corporate personal public v t e <span>In finance, an option is a contract which gives the buyer (the owner or holder of the option) the right, but not the obligation, to buy or sell an underlying asset or instrument at a specified strike price on a specified date, depending on the form of the option. The strike price may be set by reference to the spot price (market price) of the underlying security or commodity on the day an option is taken out, or it may be fixed at a discount or




#finance
An option that conveys to the owner the right to buy at a specific price is referred to as a call; an option that conveys the right of the owner to sell at a specific price is referred to as a put. Both are commonly traded, but the call option is more frequently discussed.

statusnot read reprioritisations
last reprioritisation on reading queue position [%]
started reading on finished reading on

Option (finance) - Wikipedia
or commodity on the day an option is taken out, or it may be fixed at a discount or at a premium. The seller has the corresponding obligation to fulfill the transaction – to sell or buy – if the buyer (owner) "exercises" the option. <span>An option that conveys to the owner the right to buy at a specific price is referred to as a call; an option that conveys the right of the owner to sell at a specific price is referred to as a put. Both are commonly traded, but the call option is more frequently discussed. The seller may grant an option to a buyer as part of another transaction, such as a share issue or as part of an employee incentive scheme, otherwise a buyer would pay a premium to th




Flashcard 1731692465420

Tags
#finance
Question
an option gives the buyer [...], to buy or sell
Answer
the right, but not the obligation


statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Parent (intermediate) annotation

Open it
In finance, an option is a contract which gives the buyer (the owner or holder of the option) the right, but not the obligation, to buy or sell an underlying asset or instrument at a specified strike price on a specified date, depending on the form of the option.

Original toplevel document

Option (finance) - Wikipedia
y Real estate Reinsurance Over-the-counter (off-exchange) Forwards Options Spot market Swaps Trading Participants Regulation Clearing Related areas Banks and banking Finance corporate personal public v t e <span>In finance, an option is a contract which gives the buyer (the owner or holder of the option) the right, but not the obligation, to buy or sell an underlying asset or instrument at a specified strike price on a specified date, depending on the form of the option. The strike price may be set by reference to the spot price (market price) of the underlying security or commodity on the day an option is taken out, or it may be fixed at a discount or







Flashcard 1731694038284

Tags
#finance
Question
an option gives the buyer the right to [...] at a specified strike price on a specified date, depending on the form of the option.
Answer
buy or sell an underlying asset or instrument


statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Parent (intermediate) annotation

Open it
In finance, an option is a contract which gives the buyer (the owner or holder of the option) the right, but not the obligation, to buy or sell an underlying asset or instrument at a specified strike price on a specified date, depending on the form of the option.

Original toplevel document

Option (finance) - Wikipedia
y Real estate Reinsurance Over-the-counter (off-exchange) Forwards Options Spot market Swaps Trading Participants Regulation Clearing Related areas Banks and banking Finance corporate personal public v t e <span>In finance, an option is a contract which gives the buyer (the owner or holder of the option) the right, but not the obligation, to buy or sell an underlying asset or instrument at a specified strike price on a specified date, depending on the form of the option. The strike price may be set by reference to the spot price (market price) of the underlying security or commodity on the day an option is taken out, or it may be fixed at a discount or







Flashcard 1731695611148

Tags
#finance
Question
[...] is an option to buy
Answer


statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Parent (intermediate) annotation

Open it
An option that conveys to the owner the right to buy at a specific price is referred to as a call; an option that conveys the right of the owner to sell at a specific price is referred to as a put. Both are commonly traded, but the call option is more frequently discussed. <

Original toplevel document

Option (finance) - Wikipedia
or commodity on the day an option is taken out, or it may be fixed at a discount or at a premium. The seller has the corresponding obligation to fulfill the transaction – to sell or buy – if the buyer (owner) "exercises" the option. <span>An option that conveys to the owner the right to buy at a specific price is referred to as a call; an option that conveys the right of the owner to sell at a specific price is referred to as a put. Both are commonly traded, but the call option is more frequently discussed. The seller may grant an option to a buyer as part of another transaction, such as a share issue or as part of an employee incentive scheme, otherwise a buyer would pay a premium to th







Flashcard 1731697184012

Tags
#finance
Question
[...] is an option to sell
Answer
a put


statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Parent (intermediate) annotation

Open it
An option that conveys to the owner the right to buy at a specific price is referred to as a call; an option that conveys the right of the owner to sell at a specific price is referred to as a put. Both are commonly traded, but the call option is more frequently discussed. <html>

Original toplevel document

Option (finance) - Wikipedia
or commodity on the day an option is taken out, or it may be fixed at a discount or at a premium. The seller has the corresponding obligation to fulfill the transaction – to sell or buy – if the buyer (owner) "exercises" the option. <span>An option that conveys to the owner the right to buy at a specific price is referred to as a call; an option that conveys the right of the owner to sell at a specific price is referred to as a put. Both are commonly traded, but the call option is more frequently discussed. The seller may grant an option to a buyer as part of another transaction, such as a share issue or as part of an employee incentive scheme, otherwise a buyer would pay a premium to th







Flashcard 1731698756876

Tags
#finance
Question
the [...] option is more frequently discussed.
Answer
call


statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Parent (intermediate) annotation

Open it
An option that conveys to the owner the right to buy at a specific price is referred to as a call; an option that conveys the right of the owner to sell at a specific price is referred to as a put. Both are commonly traded, but <span>the call option is more frequently discussed. <span><body><html>

Original toplevel document

Option (finance) - Wikipedia
or commodity on the day an option is taken out, or it may be fixed at a discount or at a premium. The seller has the corresponding obligation to fulfill the transaction – to sell or buy – if the buyer (owner) "exercises" the option. <span>An option that conveys to the owner the right to buy at a specific price is referred to as a call; an option that conveys the right of the owner to sell at a specific price is referred to as a put. Both are commonly traded, but the call option is more frequently discussed. The seller may grant an option to a buyer as part of another transaction, such as a share issue or as part of an employee incentive scheme, otherwise a buyer would pay a premium to th







#finance
The Black–Scholes / ˌ b l æ k ˈ ʃ oʊ l z / [1] or Black–Scholes–Merton model is a mathematical model of a financial market containing derivative investment instruments.
  1. From the partial differential equation in the model, known as the Black–Scholes equation, one can deduce
  2. the Black–Scholes formula, which gives a theoretical estimate of the price of European-style options and shows that
  3. the option has a unique price regardless of the risk of the security and its expected return (instead replacing the security's expected return with the risk-neutral rate).

statusnot read reprioritisations
last reprioritisation on reading queue position [%]
started reading on finished reading on

Black–Scholes model - Wikipedia
Black–Scholes model - Wikipedia Black–Scholes model From Wikipedia, the free encyclopedia (Redirected from Black–Scholes) Jump to: navigation, search The Black–Scholes /ˌblæk ˈʃoʊlz/ [1] or Black–Scholes–Merton model is a mathematical model of a financial market containing derivative investment instruments. From the partial differential equation in the model, known as the Black–Scholes equation, one can deduce the Black–Scholes formula, which gives a theoretical estimate of the price of European-style options and shows that the option has a unique price regardless of the risk of the security and its expected return (instead replacing the security's expected return with the risk-neutral rate). The formula led to a boom in options trading and provided mathematical legitimacy to the activities of the Chicago Board Options Exchange and other options markets around the world. [2]




Flashcard 1731703737612

Tags
#finance
Question
The Black–Scholes model is a mathematical model of a financial market containing [...] instruments
Answer
derivative investment


statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Parent (intermediate) annotation

Open it
The Black–Scholes / ˌ b l æ k ˈ ʃ oʊ l z / [1] or Black–Scholes–Merton model is a mathematical model of a financial market containing derivative investment instruments. From the partial differential equation in the model, known as the Black–Scholes equation, one can deduce the Black–Scholes formula, which gives a theoretical estimate of the price of E

Original toplevel document

Black–Scholes model - Wikipedia
Black–Scholes model - Wikipedia Black–Scholes model From Wikipedia, the free encyclopedia (Redirected from Black–Scholes) Jump to: navigation, search The Black–Scholes /ˌblæk ˈʃoʊlz/ [1] or Black–Scholes–Merton model is a mathematical model of a financial market containing derivative investment instruments. From the partial differential equation in the model, known as the Black–Scholes equation, one can deduce the Black–Scholes formula, which gives a theoretical estimate of the price of European-style options and shows that the option has a unique price regardless of the risk of the security and its expected return (instead replacing the security's expected return with the risk-neutral rate). The formula led to a boom in options trading and provided mathematical legitimacy to the activities of the Chicago Board Options Exchange and other options markets around the world. [2]







Flashcard 1731706096908

Tags
#finance
Question
mathematically, the Black–Scholes equation is a [...]


statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Parent (intermediate) annotation

Open it
The Black–Scholes / ˌ b l æ k ˈ ʃ oʊ l z / [1] or Black–Scholes–Merton model is a mathematical model of a financial market containing derivative investment instruments. From the partial differential equation in the model, known as the Black–Scholes equation, one can deduce the Black–Scholes formula, which gives a theoretical estimate of the price of European-style options and shows that the option has a

Original toplevel document

Black–Scholes model - Wikipedia
Black–Scholes model - Wikipedia Black–Scholes model From Wikipedia, the free encyclopedia (Redirected from Black–Scholes) Jump to: navigation, search The Black–Scholes /ˌblæk ˈʃoʊlz/ [1] or Black–Scholes–Merton model is a mathematical model of a financial market containing derivative investment instruments. From the partial differential equation in the model, known as the Black–Scholes equation, one can deduce the Black–Scholes formula, which gives a theoretical estimate of the price of European-style options and shows that the option has a unique price regardless of the risk of the security and its expected return (instead replacing the security's expected return with the risk-neutral rate). The formula led to a boom in options trading and provided mathematical legitimacy to the activities of the Chicago Board Options Exchange and other options markets around the world. [2]







Flashcard 1731707669772

Tags
#finance
Question
the Black–Scholes formula estimates the price of [...]


statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Parent (intermediate) annotation

Open it
is a mathematical model of a financial market containing derivative investment instruments. From the partial differential equation in the model, known as the Black–Scholes equation, one can deduce the Black–Scholes formula, which gives <span>a theoretical estimate of the price of European-style options and shows that the option has a unique price regardless of the risk of the security and its expected return (instead replacing the security's expected return with the risk-neutral rate)

Original toplevel document

Black–Scholes model - Wikipedia
Black–Scholes model - Wikipedia Black–Scholes model From Wikipedia, the free encyclopedia (Redirected from Black–Scholes) Jump to: navigation, search The Black–Scholes /ˌblæk ˈʃoʊlz/ [1] or Black–Scholes–Merton model is a mathematical model of a financial market containing derivative investment instruments. From the partial differential equation in the model, known as the Black–Scholes equation, one can deduce the Black–Scholes formula, which gives a theoretical estimate of the price of European-style options and shows that the option has a unique price regardless of the risk of the security and its expected return (instead replacing the security's expected return with the risk-neutral rate). The formula led to a boom in options trading and provided mathematical legitimacy to the activities of the Chicago Board Options Exchange and other options markets around the world. [2]







Flashcard 1731709242636

Tags
#finance
Question
under the Black–Scholes–Merton model, the option [...] regardless of the risk of the security and its expected return.
Answer
the option has a unique price


statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Parent (intermediate) annotation

Open it
nt instruments. From the partial differential equation in the model, known as the Black–Scholes equation, one can deduce the Black–Scholes formula, which gives a theoretical estimate of the price of European-style options and shows that <span>the option has a unique price regardless of the risk of the security and its expected return (instead replacing the security's expected return with the risk-neutral rate). <span><body><html>

Original toplevel document

Black–Scholes model - Wikipedia
Black–Scholes model - Wikipedia Black–Scholes model From Wikipedia, the free encyclopedia (Redirected from Black–Scholes) Jump to: navigation, search The Black–Scholes /ˌblæk ˈʃoʊlz/ [1] or Black–Scholes–Merton model is a mathematical model of a financial market containing derivative investment instruments. From the partial differential equation in the model, known as the Black–Scholes equation, one can deduce the Black–Scholes formula, which gives a theoretical estimate of the price of European-style options and shows that the option has a unique price regardless of the risk of the security and its expected return (instead replacing the security's expected return with the risk-neutral rate). The formula led to a boom in options trading and provided mathematical legitimacy to the activities of the Chicago Board Options Exchange and other options markets around the world. [2]







Flashcard 1731710815500

Tags
#finance
Question
In the Black–Scholes model the option has a unique price regardless of [...]
Answer
the risk of the security and its expected return


statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Parent (intermediate) annotation

Open it
rential equation in the model, known as the Black–Scholes equation, one can deduce the Black–Scholes formula, which gives a theoretical estimate of the price of European-style options and shows that the option has a unique price regardless of <span>the risk of the security and its expected return (instead replacing the security's expected return with the risk-neutral rate). <span><body><html>

Original toplevel document

Black–Scholes model - Wikipedia
Black–Scholes model - Wikipedia Black–Scholes model From Wikipedia, the free encyclopedia (Redirected from Black–Scholes) Jump to: navigation, search The Black–Scholes /ˌblæk ˈʃoʊlz/ [1] or Black–Scholes–Merton model is a mathematical model of a financial market containing derivative investment instruments. From the partial differential equation in the model, known as the Black–Scholes equation, one can deduce the Black–Scholes formula, which gives a theoretical estimate of the price of European-style options and shows that the option has a unique price regardless of the risk of the security and its expected return (instead replacing the security's expected return with the risk-neutral rate). The formula led to a boom in options trading and provided mathematical legitimacy to the activities of the Chicago Board Options Exchange and other options markets around the world. [2]







Flashcard 1731712388364

Tags
#finance
Question
Under the Black–Scholes–Merton model, the option's unique price is decided by [...]
Answer
the risk-neutral rate


statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Parent (intermediate) annotation

Open it
mula, which gives a theoretical estimate of the price of European-style options and shows that the option has a unique price regardless of the risk of the security and its expected return (instead replacing the security's expected return with <span>the risk-neutral rate). <span><body><html>

Original toplevel document

Black–Scholes model - Wikipedia
Black–Scholes model - Wikipedia Black–Scholes model From Wikipedia, the free encyclopedia (Redirected from Black–Scholes) Jump to: navigation, search The Black–Scholes /ˌblæk ˈʃoʊlz/ [1] or Black–Scholes–Merton model is a mathematical model of a financial market containing derivative investment instruments. From the partial differential equation in the model, known as the Black–Scholes equation, one can deduce the Black–Scholes formula, which gives a theoretical estimate of the price of European-style options and shows that the option has a unique price regardless of the risk of the security and its expected return (instead replacing the security's expected return with the risk-neutral rate). The formula led to a boom in options trading and provided mathematical legitimacy to the activities of the Chicago Board Options Exchange and other options markets around the world. [2]







#stochastics
In probability theory, a martingale is a sequence of random variables (i.e., a stochastic process) for which, at a particular time in the realized sequence, the expectation of the next value in the sequence is equal to the present observed value even given knowledge of all prior observed values.

statusnot read reprioritisations
last reprioritisation on reading queue position [%]
started reading on finished reading on

Martingale (probability theory) - Wikipedia
h For the martingale betting strategy, see martingale (betting system). [imagelink] Stopped Brownian motion is an example of a martingale. It can model an even coin-toss betting game with the possibility of bankruptcy. <span>In probability theory, a martingale is a sequence of random variables (i.e., a stochastic process) for which, at a particular time in the realized sequence, the expectation of the next value in the sequence is equal to the present observed value even given knowledge of all prior observed values. Contents [hide] 1 History 2 Definitions 2.1 Martingale sequences with respect to another sequence 2.2 General definition 3 Examples of martingales 4 Submartingales, super




Flashcard 1731718679820

Tags
#stochastics
Question
for a [...], at a particular time in the realized sequence, the expectation of the next value is equal to the present observed value, even given knowledge of all prior observed values.
Answer
martingale


statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Parent (intermediate) annotation

Open it
In probability theory, a martingale is a sequence of random variables (i.e., a stochastic process) for which, at a particular time in the realized sequence, the expectation of the next value in the sequence is equal to th

Original toplevel document

Martingale (probability theory) - Wikipedia
h For the martingale betting strategy, see martingale (betting system). [imagelink] Stopped Brownian motion is an example of a martingale. It can model an even coin-toss betting game with the possibility of bankruptcy. <span>In probability theory, a martingale is a sequence of random variables (i.e., a stochastic process) for which, at a particular time in the realized sequence, the expectation of the next value in the sequence is equal to the present observed value even given knowledge of all prior observed values. Contents [hide] 1 History 2 Definitions 2.1 Martingale sequences with respect to another sequence 2.2 General definition 3 Examples of martingales 4 Submartingales, super







Flashcard 1731720252684

Tags
#stochastics
Question
a martingale is a [...]


statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Parent (intermediate) annotation

Open it
In probability theory, a martingale is a sequence of random variables (i.e., a stochastic process) for which, at a particular time in the realized sequence, the expectation of the next value in the sequence is equal to the present observed value even given knowledge of all prior obse

Original toplevel document

Martingale (probability theory) - Wikipedia
h For the martingale betting strategy, see martingale (betting system). [imagelink] Stopped Brownian motion is an example of a martingale. It can model an even coin-toss betting game with the possibility of bankruptcy. <span>In probability theory, a martingale is a sequence of random variables (i.e., a stochastic process) for which, at a particular time in the realized sequence, the expectation of the next value in the sequence is equal to the present observed value even given knowledge of all prior observed values. Contents [hide] 1 History 2 Definitions 2.1 Martingale sequences with respect to another sequence 2.2 General definition 3 Examples of martingales 4 Submartingales, super







Flashcard 1731721825548

Tags
#stochastics
Question
In a martingale [...] is equal to the present observed value even given knowledge of all prior observed values.
Answer
the expectation of the next value in the sequence


statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Parent (intermediate) annotation

Open it
In probability theory, a martingale is a sequence of random variables (i.e., a stochastic process) for which, at a particular time in the realized sequence, the expectation of the next value in the sequence is equal to the present observed value even given knowledge of all prior observed values.

Original toplevel document

Martingale (probability theory) - Wikipedia
h For the martingale betting strategy, see martingale (betting system). [imagelink] Stopped Brownian motion is an example of a martingale. It can model an even coin-toss betting game with the possibility of bankruptcy. <span>In probability theory, a martingale is a sequence of random variables (i.e., a stochastic process) for which, at a particular time in the realized sequence, the expectation of the next value in the sequence is equal to the present observed value even given knowledge of all prior observed values. Contents [hide] 1 History 2 Definitions 2.1 Martingale sequences with respect to another sequence 2.2 General definition 3 Examples of martingales 4 Submartingales, super







Flashcard 1731723398412

Tags
#stochastics
Question
In a martingale, the expectation of the next value in the sequence equals to [...]
Answer
the present observed value

even given knowledge of all prior observed values.


statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Parent (intermediate) annotation

Open it
In probability theory, a martingale is a sequence of random variables (i.e., a stochastic process) for which, at a particular time in the realized sequence, the expectation of the next value in the sequence is equal to the present observed value even given knowledge of all prior observed values. <body><html>

Original toplevel document

Martingale (probability theory) - Wikipedia
h For the martingale betting strategy, see martingale (betting system). [imagelink] Stopped Brownian motion is an example of a martingale. It can model an even coin-toss betting game with the possibility of bankruptcy. <span>In probability theory, a martingale is a sequence of random variables (i.e., a stochastic process) for which, at a particular time in the realized sequence, the expectation of the next value in the sequence is equal to the present observed value even given knowledge of all prior observed values. Contents [hide] 1 History 2 Definitions 2.1 Martingale sequences with respect to another sequence 2.2 General definition 3 Examples of martingales 4 Submartingales, super







#stochastics

The Wiener process is characterised by the following properties:[1]

  1. a.s.
  2. has independent increments: for every the future increments , are independent of the past values ,
  3. has Gaussian increments: is normally distributed with mean and variance ,
  4. has continuous paths: With probability , is continuous in
...

statusnot read reprioritisations
last reprioritisation on reading queue position [%]
started reading on finished reading on

Wiener process - Wikipedia
Brownian motion 4.3 Time change 4.4 Change of measure 4.5 Complex-valued Wiener process 4.5.1 Self-similarity 4.5.2 Time change 5 See also 6 Notes 7 References 8 External links Characterisations of the Wiener process[edit source] <span>The Wiener process W t {\displaystyle W_{t}} is characterised by the following properties: [1] W 0 = 0 {\displaystyle W_{0}=0} a.s. W {\displaystyle W} has independent increments: for every t > 0 , {\displaystyle t>0,} the future increments W t + u − W t , {\displaystyle W_{t+u}-W_{t},} u ≥ 0 , {\displaystyle u\geq 0,} , are independent of the past values W s {\displaystyle W_{s}} , s ≤ t . {\displaystyle s\leq t.} W {\displaystyle W} has Gaussian increments: W t + u − W t {\displaystyle W_{t+u}-W_{t}} is normally distributed with mean 0 {\displaystyle 0} and variance u {\displaystyle u} , W t + u − W t ∼ N ( 0 , u ) . {\displaystyle W_{t+u}-W_{t}\sim {\mathcal {N}}(0,u).} W {\displaystyle W} has continuous paths: With probability 1 {\displaystyle 1} , W t {\displaystyle W_{t}} is continuous in t {\displaystyle t} . The independent increments means that if 0 ≤ s 1 < t 1 ≤ s 2 < t 2 then W t 1 −W s 1 and W t 2 −W s 2 are independent random variables, and the similar condition holds for




Flashcard 1731730476300

Tags
#stochastics
Question

The Wiener process starts at [...

Answer


statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Parent (intermediate) annotation

Open it
The Wiener process is characterised by the following properties: [1] a.s. has independent increments: for every the future increments , are independent of the past values , has Gaussian increments: is normally distributed with mean and variance ,

Original toplevel document

Wiener process - Wikipedia
Brownian motion 4.3 Time change 4.4 Change of measure 4.5 Complex-valued Wiener process 4.5.1 Self-similarity 4.5.2 Time change 5 See also 6 Notes 7 References 8 External links Characterisations of the Wiener process[edit source] <span>The Wiener process W t {\displaystyle W_{t}} is characterised by the following properties: [1] W 0 = 0 {\displaystyle W_{0}=0} a.s. W {\displaystyle W} has independent increments: for every t > 0 , {\displaystyle t>0,} the future increments W t + u − W t , {\displaystyle W_{t+u}-W_{t},} u ≥ 0 , {\displaystyle u\geq 0,} , are independent of the past values W s {\displaystyle W_{s}} , s ≤ t . {\displaystyle s\leq t.} W {\displaystyle W} has Gaussian increments: W t + u − W t {\displaystyle W_{t+u}-W_{t}} is normally distributed with mean 0 {\displaystyle 0} and variance u {\displaystyle u} , W t + u − W t ∼ N ( 0 , u ) . {\displaystyle W_{t+u}-W_{t}\sim {\mathcal {N}}(0,u).} W {\displaystyle W} has continuous paths: With probability 1 {\displaystyle 1} , W t {\displaystyle W_{t}} is continuous in t {\displaystyle t} . The independent increments means that if 0 ≤ s 1 < t 1 ≤ s 2 < t 2 then W t 1 −W s 1 and W t 2 −W s 2 are independent random variables, and the similar condition holds for







Flashcard 1731732835596

Tags
#stochastics
Question

The Wiener process has [...] increments: for every the future increments , are independent of the past values ,

Answer
independent


statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Parent (intermediate) annotation

Open it
The Wiener process is characterised by the following properties: [1] a.s. has independent increments: for every the future increments , are independent of the past values , has Gaussian increments: is normally distributed with mean and variance , has continuous paths: With

Original toplevel document

Wiener process - Wikipedia
Brownian motion 4.3 Time change 4.4 Change of measure 4.5 Complex-valued Wiener process 4.5.1 Self-similarity 4.5.2 Time change 5 See also 6 Notes 7 References 8 External links Characterisations of the Wiener process[edit source] <span>The Wiener process W t {\displaystyle W_{t}} is characterised by the following properties: [1] W 0 = 0 {\displaystyle W_{0}=0} a.s. W {\displaystyle W} has independent increments: for every t > 0 , {\displaystyle t>0,} the future increments W t + u − W t , {\displaystyle W_{t+u}-W_{t},} u ≥ 0 , {\displaystyle u\geq 0,} , are independent of the past values W s {\displaystyle W_{s}} , s ≤ t . {\displaystyle s\leq t.} W {\displaystyle W} has Gaussian increments: W t + u − W t {\displaystyle W_{t+u}-W_{t}} is normally distributed with mean 0 {\displaystyle 0} and variance u {\displaystyle u} , W t + u − W t ∼ N ( 0 , u ) . {\displaystyle W_{t+u}-W_{t}\sim {\mathcal {N}}(0,u).} W {\displaystyle W} has continuous paths: With probability 1 {\displaystyle 1} , W t {\displaystyle W_{t}} is continuous in t {\displaystyle t} . The independent increments means that if 0 ≤ s 1 < t 1 ≤ s 2 < t 2 then W t 1 −W s 1 and W t 2 −W s 2 are independent random variables, and the similar condition holds for







Flashcard 1731734408460

Tags
#stochastics
Question

The Wiener process has independent increments: for every [...

Answer
the future increments , are independent of the past values ,


statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Parent (intermediate) annotation

Open it
The Wiener process is characterised by the following properties: [1] a.s. has independent increments: for every the future increments , are independent of the past values , has Gaussian increments: is normally distributed with mean and variance , has continuous paths: With probability , is continuous in .

Original toplevel document

Wiener process - Wikipedia
Brownian motion 4.3 Time change 4.4 Change of measure 4.5 Complex-valued Wiener process 4.5.1 Self-similarity 4.5.2 Time change 5 See also 6 Notes 7 References 8 External links Characterisations of the Wiener process[edit source] <span>The Wiener process W t {\displaystyle W_{t}} is characterised by the following properties: [1] W 0 = 0 {\displaystyle W_{0}=0} a.s. W {\displaystyle W} has independent increments: for every t > 0 , {\displaystyle t>0,} the future increments W t + u − W t , {\displaystyle W_{t+u}-W_{t},} u ≥ 0 , {\displaystyle u\geq 0,} , are independent of the past values W s {\displaystyle W_{s}} , s ≤ t . {\displaystyle s\leq t.} W {\displaystyle W} has Gaussian increments: W t + u − W t {\displaystyle W_{t+u}-W_{t}} is normally distributed with mean 0 {\displaystyle 0} and variance u {\displaystyle u} , W t + u − W t ∼ N ( 0 , u ) . {\displaystyle W_{t+u}-W_{t}\sim {\mathcal {N}}(0,u).} W {\displaystyle W} has continuous paths: With probability 1 {\displaystyle 1} , W t {\displaystyle W_{t}} is continuous in t {\displaystyle t} . The independent increments means that if 0 ≤ s 1 < t 1 ≤ s 2 < t 2 then W t 1 −W s 1 and W t 2 −W s 2 are independent random variables, and the similar condition holds for







Flashcard 1731736767756

Tags
#stochastics
Question

The Wiener process has [...]: is normally distributed with mean and variance ,

Answer
Gaussian increments


statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Parent (intermediate) annotation

Open it
ad> The Wiener process is characterised by the following properties: [1] a.s. has independent increments: for every the future increments , are independent of the past values , has Gaussian increments: is normally distributed with mean and variance , has continuous paths: With probability , is continuous in . <html>

Original toplevel document

Wiener process - Wikipedia
Brownian motion 4.3 Time change 4.4 Change of measure 4.5 Complex-valued Wiener process 4.5.1 Self-similarity 4.5.2 Time change 5 See also 6 Notes 7 References 8 External links Characterisations of the Wiener process[edit source] <span>The Wiener process W t {\displaystyle W_{t}} is characterised by the following properties: [1] W 0 = 0 {\displaystyle W_{0}=0} a.s. W {\displaystyle W} has independent increments: for every t > 0 , {\displaystyle t>0,} the future increments W t + u − W t , {\displaystyle W_{t+u}-W_{t},} u ≥ 0 , {\displaystyle u\geq 0,} , are independent of the past values W s {\displaystyle W_{s}} , s ≤ t . {\displaystyle s\leq t.} W {\displaystyle W} has Gaussian increments: W t + u − W t {\displaystyle W_{t+u}-W_{t}} is normally distributed with mean 0 {\displaystyle 0} and variance u {\displaystyle u} , W t + u − W t ∼ N ( 0 , u ) . {\displaystyle W_{t+u}-W_{t}\sim {\mathcal {N}}(0,u).} W {\displaystyle W} has continuous paths: With probability 1 {\displaystyle 1} , W t {\displaystyle W_{t}} is continuous in t {\displaystyle t} . The independent increments means that if 0 ≤ s 1 < t 1 ≤ s 2 < t 2 then W t 1 −W s 1 and W t 2 −W s 2 are independent random variables, and the similar condition holds for







Flashcard 1731738340620

Tags
#stochastics
Question

in the Wiener process , is normally distributed with [...

Answer


statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Parent (intermediate) annotation

Open it
r process is characterised by the following properties: [1] a.s. has independent increments: for every the future increments , are independent of the past values , has Gaussian increments: is normally distributed with <span>mean and variance , has continuous paths: With probability , is continuous in . <span><body><html>

Original toplevel document

Wiener process - Wikipedia
Brownian motion 4.3 Time change 4.4 Change of measure 4.5 Complex-valued Wiener process 4.5.1 Self-similarity 4.5.2 Time change 5 See also 6 Notes 7 References 8 External links Characterisations of the Wiener process[edit source] <span>The Wiener process W t {\displaystyle W_{t}} is characterised by the following properties: [1] W 0 = 0 {\displaystyle W_{0}=0} a.s. W {\displaystyle W} has independent increments: for every t > 0 , {\displaystyle t>0,} the future increments W t + u − W t , {\displaystyle W_{t+u}-W_{t},} u ≥ 0 , {\displaystyle u\geq 0,} , are independent of the past values W s {\displaystyle W_{s}} , s ≤ t . {\displaystyle s\leq t.} W {\displaystyle W} has Gaussian increments: W t + u − W t {\displaystyle W_{t+u}-W_{t}} is normally distributed with mean 0 {\displaystyle 0} and variance u {\displaystyle u} , W t + u − W t ∼ N ( 0 , u ) . {\displaystyle W_{t+u}-W_{t}\sim {\mathcal {N}}(0,u).} W {\displaystyle W} has continuous paths: With probability 1 {\displaystyle 1} , W t {\displaystyle W_{t}} is continuous in t {\displaystyle t} . The independent increments means that if 0 ≤ s 1 < t 1 ≤ s 2 < t 2 then W t 1 −W s 1 and W t 2 −W s 2 are independent random variables, and the similar condition holds for







#gauss-markov-process

Gauss–Markov stochastic processes (named after Carl Friedrich Gauss and Andrey Markov) are stochastic processes that satisfy the requirements for both Gaussian processes and Markov processes.[1][2] The stationary Gauss–Markov process (also known as a Ornstein–Uhlenbeck process) is a very special case because it is unique, except for some trivial exceptions.

statusnot read reprioritisations
last reprioritisation on reading queue position [%]
started reading on finished reading on

Gauss–Markov process - Wikipedia
translations!] Gauss–Markov process From Wikipedia, the free encyclopedia Jump to: navigation, search Not to be confused with the Gauss–Markov theorem of mathematical statistics. <span>Gauss–Markov stochastic processes (named after Carl Friedrich Gauss and Andrey Markov) are stochastic processes that satisfy the requirements for both Gaussian processes and Markov processes. [1] [2] The stationary Gauss–Markov process (also known as a Ornstein–Uhlenbeck process) is a very special case because it is unique, except for some trivial exceptions. Every Gauss–Markov process X(t) possesses the three following properties: If h(t) is a non-zero scalar function of t, then Z(t) = h(t)X(t) is also a Gauss–Markov process If f(t) is




Flashcard 1731745680652

Tags
#gauss-markov-process
Question

Gauss–Markov stochastic processes satisfy the requirements for [...]


statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Parent (intermediate) annotation

Open it
Gauss–Markov stochastic processes (named after Carl Friedrich Gauss and Andrey Markov) are stochastic processes that satisfy the requirements for both Gaussian processes and Markov processes. [1] [2] The stationary Gauss–Markov process (also known as a Ornstein–Uhlenbeck process) is a very special case because it is unique, except for some trivial exceptions. </sp

Original toplevel document

Gauss–Markov process - Wikipedia
translations!] Gauss–Markov process From Wikipedia, the free encyclopedia Jump to: navigation, search Not to be confused with the Gauss–Markov theorem of mathematical statistics. <span>Gauss–Markov stochastic processes (named after Carl Friedrich Gauss and Andrey Markov) are stochastic processes that satisfy the requirements for both Gaussian processes and Markov processes. [1] [2] The stationary Gauss–Markov process (also known as a Ornstein–Uhlenbeck process) is a very special case because it is unique, except for some trivial exceptions. Every Gauss–Markov process X(t) possesses the three following properties: If h(t) is a non-zero scalar function of t, then Z(t) = h(t)X(t) is also a Gauss–Markov process If f(t) is







Flashcard 1731747253516

Tags
#gauss-markov-process
Question

The stationary Gauss–Markov process is known as [...]


statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Parent (intermediate) annotation

Open it
kov stochastic processes (named after Carl Friedrich Gauss and Andrey Markov) are stochastic processes that satisfy the requirements for both Gaussian processes and Markov processes. [1] [2] The stationary Gauss–Markov process (also known as <span>a Ornstein–Uhlenbeck process) is a very special case because it is unique, except for some trivial exceptions. <span><body><html>

Original toplevel document

Gauss–Markov process - Wikipedia
translations!] Gauss–Markov process From Wikipedia, the free encyclopedia Jump to: navigation, search Not to be confused with the Gauss–Markov theorem of mathematical statistics. <span>Gauss–Markov stochastic processes (named after Carl Friedrich Gauss and Andrey Markov) are stochastic processes that satisfy the requirements for both Gaussian processes and Markov processes. [1] [2] The stationary Gauss–Markov process (also known as a Ornstein–Uhlenbeck process) is a very special case because it is unique, except for some trivial exceptions. Every Gauss–Markov process X(t) possesses the three following properties: If h(t) is a non-zero scalar function of t, then Z(t) = h(t)X(t) is also a Gauss–Markov process If f(t) is







Flashcard 1731750923532

Question
[...] tends to indicate motion backward, while [...] tends to refer to place
Answer
Atrás, detrás

Tuvo que volver atrás.

Fumaba un cigarrillo detrás de otro.


statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill
¿Detrás or Atrás — Which Spanish Adverb Should I Use?
Updated May 15, 2017 Although both detrás and atrás are adverbs that can be translated as "behind" and are often listed as synonyms, they tend to be used in different ways. <span>Atrás tends to indicate motion backward, while detrás tends to refer to place, but the distinction isn't always clear. Sometimes the choice of word is a matter of which "sounds better" rather than following some fixed rule. That said, it is probably eas







Si usted no paga sus deudas, perderá su poder de crédito, por lo tanto [1*], le será más difícil conseguir nuevos ingresos de dinero, por tanto [2*], es de nuestro interés el recordarle que debe pagar sus deudas.

1* Por consiguiente / de ahí en mas

2* Por lo que / entonces

Tal como lo has indicado en tu pregunta

por lo ~.

  1. loc. adv. Por consiguiente, por lo que antes se ha dicho, por el motivo o las razones de que acaba de hablarse. U. t. c. loc. conjunt.

por tanto.

  1. loc. adv. Por lo que, en atención a lo cual. U. t. c. loc. conjunt.

La diferencia es mínima hoy en día, al menos para ámbitos informales.

statusnot read reprioritisations
last reprioritisation on reading queue position [%]
started reading on finished reading on

selección de palabras - ¿Cuál es la diferencia entre &quot;por lo tanto&quot; y &quot;por tanto&quot;? - Spanish Language Stack Exchange
oldest votes up vote 3 down vote accepted <span>Si usted no paga sus deudas, perderá su poder de crédito, por lo tanto [1*], le será más difícil conseguir nuevos ingresos de dinero, por tanto [2*], es de nuestro interés el recordarle que debe pagar sus deudas. 1* Por consiguiente / de ahí en mas 2* Por lo que / entonces Tal como lo has indicado en tu pregunta por lo ~. loc. adv. Por consiguiente, por lo que antes se ha dicho, por el motivo o las razones de que acaba de hablarse. U. t. c. loc. conjunt. por tanto. loc. adv. Por lo que, en atención a lo cual. U. t. c. loc. conjunt. La diferencia es mínima hoy en día, al menos para ámbitos informales. share|improve this answer edited Jul 4 '12 at 16:23 [imagelink] JoulSauron




Delante significa ‘en la parte anterior’, ‘en frente’ o ‘ante alguien’, se usa por lo general para indicar la situación de alguien o algo. Adelante, por su parte, equivale a ‘más allá’, ‘hacia allá’, o ‘hacia enfrente’, y se emplea para indicar la existencia de un movimiento, sea real o figurado. La forma alante, por otro lado, es incorrecta.

statusnot read reprioritisations
last reprioritisation on reading queue position [%]
started reading on finished reading on

Delante o adelante - Diccionario de Dudas
amp;cj=1"> [imagelink] Palabras Homófonas Palabras Parónimas Fonética y fonología Uso Grafía Léxicas Ver más Latinismos Extranjerismos Barbarismos Ultracorrecciones Dudas de uso Delante o adelante Delante significa ‘en la parte anterior’, ‘en frente’ o ‘ante alguien’, se usa por lo general para indicar la situación de alguien o algo. Adelante , por su parte, equivale a ‘más allá’, ‘hacia allá’, o ‘hacia enfrente’, y se emplea para indicar la existencia de un movimiento, sea real o figurado. La forma alante , por otro lado, es incorrecta. Cuándo usar delante Delante es un adverbio de lugar; se emplea con el significado de ‘en la parte anterior’, ‘en frente’ o ‘en presencia de alguien’. Por lo general, es un adverbio que




Flashcard 1731762982156

Tags
#spanish
Question
[...] significa ‘en la parte anterior’ y [...] equivale a ‘hacia allá’
Answer
Delante Adelante

Examples
Voy yo delante, que sé el camino.
Sigamos adelante.


La forma alante, por otro lado, es incorrecta.


statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Parent (intermediate) annotation

Open it
Delante significa ‘en la parte anterior’, ‘en frente’ o ‘ante alguien’, se usa por lo general para indicar la situación de alguien o algo. Adelante , por su parte, equivale a ‘más allá’, ‘hacia allá’, o ‘hacia enfrente’, y se emplea para indicar la existencia de un movimiento, sea real o figurado. La forma alante , por otro lado, es incorrecta.

Original toplevel document

Delante o adelante - Diccionario de Dudas
amp;cj=1"> [imagelink] Palabras Homófonas Palabras Parónimas Fonética y fonología Uso Grafía Léxicas Ver más Latinismos Extranjerismos Barbarismos Ultracorrecciones Dudas de uso Delante o adelante Delante significa ‘en la parte anterior’, ‘en frente’ o ‘ante alguien’, se usa por lo general para indicar la situación de alguien o algo. Adelante , por su parte, equivale a ‘más allá’, ‘hacia allá’, o ‘hacia enfrente’, y se emplea para indicar la existencia de un movimiento, sea real o figurado. La forma alante , por otro lado, es incorrecta. Cuándo usar delante Delante es un adverbio de lugar; se emplea con el significado de ‘en la parte anterior’, ‘en frente’ o ‘en presencia de alguien’. Por lo general, es un adverbio que







Tu pregunta es difícil, Cristina, porque los tres términos son casi sinónimos y en la mayoría de los casos son intercambiables. Pero tomando muchos riesgos, te doy los matices que "siento":
Lograr algo difícil.
Conseguir algo raro.
Alcanzar algo lejano y muy alto.
Pero estoy seguro que habrá otros foristas que no los "sentirán" como yo.
Esperemos otras opiniones.

statusnot read reprioritisations
last reprioritisation on reading queue position [%]
started reading on finished reading on

Lograr, alcanzar, conseguir | WordReference Forums
France, french <span>Tu pregunta es difícil, Cristina, porque los tres términos son casi sinónimos y en la mayoría de los casos son intercambiables. Pero tomando muchos riesgos, te doy los matices que "siento": Lograr algo difícil. Conseguir algo raro. Alcanzar algo lejano y muy alto. Pero estoy seguro que habrá otros foristas que no los "sentirán" como yo. Esperemos otras opiniones. lpfr, Nov 3, 2007 #2




Flashcard 1731769273612

Question
[...] algo difícil.
[...] algo raro.
[...] algo lejano y muy alto.
Answer
Lograr Conseguir Alcanzar


statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Parent (intermediate) annotation

Open it
ead> Tu pregunta es difícil, Cristina, porque los tres términos son casi sinónimos y en la mayoría de los casos son intercambiables. Pero tomando muchos riesgos, te doy los matices que "siento": Lograr algo difícil. Conseguir algo raro. Alcanzar algo lejano y muy alto. Pero estoy seguro que habrá otros foristas que no los "sentirán" como yo. Esperemos otras opiniones. <html>

Original toplevel document

Lograr, alcanzar, conseguir | WordReference Forums
France, french <span>Tu pregunta es difícil, Cristina, porque los tres términos son casi sinónimos y en la mayoría de los casos son intercambiables. Pero tomando muchos riesgos, te doy los matices que "siento": Lograr algo difícil. Conseguir algo raro. Alcanzar algo lejano y muy alto. Pero estoy seguro que habrá otros foristas que no los "sentirán" como yo. Esperemos otras opiniones. lpfr, Nov 3, 2007 #2







Flashcard 1731771632908

Tags
#gaussian-process
Question
Ornstein–Uhlenbeck covariance function: [...]
Answer


statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill
Gaussian process - Wikipedia
2 ) {\displaystyle K_{\operatorname {SE} }(x,x')=\exp {\Big (}-{\frac {\|d\|^{2}}{2\ell ^{2}}}{\Big )}} <span>Ornstein–Uhlenbeck: K OU ( x , x ′ ) = exp ⁡ ( − | d | ℓ ) {\displaystyle K_{\operatorname {OU} }(x,x')=\exp \left(-{\frac {|d|}{\ell }}\right)} Matérn: K Matern ( x , x ′ )







Flashcard 1731774516492

Tags
#gaussian-process
Question
Periodic covariance function: [...]
Answer


statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill
Gaussian process - Wikipedia
{\displaystyle K_{\operatorname {Matern} }(x,x')={\frac {2^{1-\nu }}{\Gamma (\nu )}}{\Big (}{\frac {{\sqrt {2\nu }}|d|}{\ell }}{\Big )}^{\nu }K_{\nu }{\Big (}{\frac {{\sqrt {2\nu }}|d|}{\ell }}{\Big )}} <span>Periodic: K P ( x , x ′ ) = exp ⁡ ( − 2 sin 2 ⁡ ( d 2 ) ℓ 2 ) {\displaystyle K_{\operatorname {P} }(x,x')=\exp \left(-{\frac {2\sin ^{2}\left({\frac {d}{2}}\right)}{\ell ^{2}}}\right)} Rational quadratic: K RQ ( x , x ′







Flashcard 1731776875788

Tags
#gaussian-process
Question
Rational quadratic covariance function: [...]
Answer


statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill
Gaussian process - Wikipedia
2 ) {\displaystyle K_{\operatorname {P} }(x,x')=\exp \left(-{\frac {2\sin ^{2}\left({\frac {d}{2}}\right)}{\ell ^{2}}}\right)} <span>Rational quadratic: K RQ ( x , x ′ ) = ( 1 + | d | 2 ) − α , α ≥ 0 {\displaystyle K_{\operatorname {RQ} }(x,x')=(1+|d|^{2})^{-\alpha },\quad \alpha \geq 0} Here d = x − x ′ {\displaystyle d=x-x'} . The parameter ℓ is the character







Flashcard 1731782380812

Question
sus palabras [...] de todo sentido
her words mean absolutely nothing or make no sense at all
Answer
carecen


statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill






#has-images

宝宝翻、抬、坐、爬、走、跑、跳、说的时间大全




准爸妈学习一下

几个月的宝宝会翻身?
几个月的宝宝会爬行?
你们关心的宝宝翻、抬、坐、爬、走、跑、跳、说都
几个月的宝宝会走路?
几个月的宝宝会自己穿衣服?
这可是新手爸妈非常关心的话题,来看看幼儿发育图解版吧,轻松易读、记忆深刻!
每个宝宝的发展都是独一无二的,以下时间是平均值。自家宝宝发育得早点或者晚些都是正常的,不必介意。
第1个月
俯卧、握拳、蹬腿、挥动手臂、听声音有反应、感官敏锐、视力比较模糊。

第2个月
开始学习抬头,发现自己的手,偶尔会露出笑容,会有各种情绪的反应。

第3个月
俯卧可以撑起上身,头可以抬45度,开始把看和做联系到一起。

第4-5个月
会翻身,会大笑,发出单音节,喜欢注视镜子中的自己。

第5-6个月
有支撑能够独立坐一会,会喃喃自语引起别人注意,躺着的时候可以用不同的方式滚动身体。

第6-7个月
可以自己坐、能够灵活翻身、手眼协调配合较好、表情更丰富。

第7-8个月
开始爬行、学习两指抓、发出的声音增多、理解成人语言的能力增强。

第8-9个月
可以扶物站立、喜欢敲打能够发出声音的物品、手部动作更加灵活。

第10个月
能够站起来、偶尔可以走几步、可以自己用杯子喝水、喜欢看人玩耍、还不愿与人分享。

第11-12个月
能够扶物行走、手指灵活性大大增强、会翻书、变得好动、能说简单的单字、联想能力增强。

第12-15个月
学会走路、会弯腰捡东西、有强烈的好奇心、能够简单交流、记忆力很好、开始有自己的主意。

第15-18个月
喜欢尝试自己洗手、洗脸、能控制大小便、能够自如蹲下,能说简单的句子、分析和解决问题的能力提高、喜欢模仿。

第18-21个月
能够搬动小物品、萌发10颗乳牙、身体平衡力发展良好、能够跑跳蹲、开始尝试自己解决问题、能够表达自己一些意愿和要求、创造力增强。

第21-24个月
走路稳稳当当、能够独立做一些事情,如洗手、上厕所等,手眼协调能力进一步加强、可以做一些简单的家务,如浇花等。

第24-30个月
行走自如,能独立穿衣服、折衣服,也可以做些家务,如擦桌子、擦鞋等,语言能力进一步提升,可以跟别人展开对话。

第30-36个月
可以独立做切、洗、种植等工作,可以用各种词汇来表达自己的情绪,开始学习社交,主动和小伙伴们打招呼了,语言能力突飞猛进,各项运动能力已经很强了。

statusnot read reprioritisations
last reprioritisation on reading queue position [%]
started reading on finished reading on