The terms are different: Equivariant to translation means that a translation of input features results in an equivalent translation of outputs. So if your pattern 0,3,2,0,0 on the input results in 0,1,0,0 in the output, then the pattern 0,0,3,2,0 might lead to 0,0,1,0 Invariant to translation means that a translation of input features doe not change the outputs at all. So if your pattern 0,3,2,0,0 on the input results in 0,1,0 in the output, then the pattern 0,0,3,2,0 would also lead to 0,1,0 For feature maps in convolutional networks to be useful, they typically need both properties in some balance. The equivariance allows the network to generalise edge, texture, shape detection in different locations. The invariance allows precise location of the detected features to matter less. These are two complementary types of generalisation for many image processing tasks.
|