Edited, memorised or added to reading queue

on 05-Dec-2023 (Tue)

Do you want BuboFlash to help you learning these things? Click here to log in or create user.

Definition of the norm of the function
For a function, the norm of the function is defined as the square root of the inner product of the function: \(||f(x)||:=\sqrt{\left\langle f(x),f(x)\right\rangle}=\sqrt{\int^{x=b}_{x=a}|f(x)|^{2}dx}\)
statusnot read reprioritisations
last reprioritisation on suggested re-reading day
started reading on finished reading on




Definition of Unit norm of a function

If a function \(f(x)\) has unit norm, then: \(||y(x)||=1\)

statusnot read reprioritisations
last reprioritisation on suggested re-reading day
started reading on finished reading on




Flashcard 7602844339468

Question

If a function \(f(x)\) has unit norm, then: [...]

Answer
\(||y(x)||=1\)

statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Definition of Unit norm of a function
If a function \(f(x)\) has unit norm, then: \(||y(x)||=1\)







Flashcard 7602845912332

Question

If a function \(f(x)\) has [...], then: \(||y(x)||=1\)

Answer
unit norm

statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Definition of Unit norm of a function
If a function \(f(x)\) has unit norm, then: \(||y(x)||=1\)







Flashcard 7602848795916

Question
For a function, the norm of the function is defined as [...]
Answer
the square root of the inner product of the function: \(||f(x)||:=\sqrt{\left\langle f(x),f(x)\right\rangle}=\sqrt{\int^{x=b}_{x=a}|f(x)|^{2}dx}\)

statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Definition of the norm of the function
For a function, the norm of the function is defined as the square root of the inner product of the function: \(||f(x)||:=\sqrt{\left\langle f(x),f(x)\right\rangle}=\sqrt{\int^{x=b}_{x=a}|f(x)|^{2}dx}\)







Definition of the orthogonality of a function
在数学中,函数的正交性是用来描述一组函数具有的一种关键关系,这种关系意味着这组函数在某种意义上是互相独立的。
在函数空间中,两个函数\(f_{i}(x),f_{j}(x)\)被称为正交的,如果它们的内积为零:\(\left\langle f_{i}(x),f_{j}(x)\right\rangle=0\)
statusnot read reprioritisations
last reprioritisation on suggested re-reading day
started reading on finished reading on




Flashcard 7602852990220

Question
在数学中,函数的正交性是用来描述一组函数具有的一种关键关系,这种关系意味着这组函数在某种意义上是[...]
在函数空间中,两个函数\(f_{i}(x),f_{j}(x)\)被称为正交的,如果它们的内积为零:\(\left\langle f_{i}(x),f_{j}(x)\right\rangle=0\)
Answer
互相独立的

statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Definition of the orthogonality of a function
在数学中,函数的正交性是用来描述一组函数具有的一种关键关系,这种关系意味着这组函数在某种意义上是互相独立的。 在函数空间中,两个函数\(f_{i}(x),f_{j}(x)\)被称为正交的,如果它们的内积为零:\(\left\langle f_{i}(x),f_{j}(x)\right\rangle=0\)







Flashcard 7602856398092

Question
在数学中,函数的正交性是用来描述一组函数具有的一种关键关系,这种关系意味着这组函数在某种意义上是互相独立的。
在函数空间中,两个函数\(f_{i}(x),f_{j}(x)\)被称为正交的,如果[...]
Answer
它们的内积为零:\(\left\langle f_{i}(x),f_{j}(x)\right\rangle=0\)

statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Definition of the orthogonality of a function
在数学中,函数的正交性是用来描述一组函数具有的一种关键关系,这种关系意味着这组函数在某种意义上是互相独立的。 在函数空间中,两个函数\(f_{i}(x),f_{j}(x)\)被称为正交的,如果它们的内积为零:\(\left\langle f_{i}(x),f_{j}(x)\right\rangle=0\)







Definition of the orthonormality of a funciton
在数学中,函数的正交规范性是用来描述一组函数具有两个关键特性:正交性(Orthogonality)和规范性(Normality)的术语:
If \(y_{i}(x),y_{j}(x)\) are "orthonormal" if \(\left\langle y_{i}(x),y_{j}(x)\right\rangle_{w;(a,b)}=\delta_{ij}\equiv\left\{\begin{aligned}&1 & &i=j \cr&0 & &i\neq j\end{aligned}\right.\)
statusnot read reprioritisations
last reprioritisation on suggested re-reading day
started reading on finished reading on




Flashcard 7602862165260

Question
在数学中,函数的正交规范性是用来描述一组函数具有两个关键特性:正交性(Orthogonality)和规范性(Normality)的术语:
If \(y_{i}(x),y_{j}(x)\) are "orthonormal" if [...]
Answer
\(\left\langle y_{i}(x),y_{j}(x)\right\rangle_{w;(a,b)}=\delta_{ij}\equiv\left\{\begin{aligned}&1 & &i=j \cr&0 & &i\neq j\end{aligned}\right.\)

statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Definition of the orthonormality of a funciton
在数学中,函数的正交规范性是用来描述一组函数具有两个关键特性:正交性(Orthogonality)和规范性(Normality)的术语: If \(y_{i}(x),y_{j}(x)\) are "orthonormal" if \(\left\langle y_{i}(x),y_{j}(x)\right\rangle_{w;(a,b)}=\delta_{ij}\equiv\left\{\begin{aligned}&1 & &i=j \cr&0 & &i\neq j\end{aligned}\right.\)







Flashcard 7602864000268

Question
在数学中,函数的正交规范性是用来描述一组函数具有两个关键特性: [...][...] 的术语:
If \(y_{i}(x),y_{j}(x)\) are "orthonormal" if \(\left\langle y_{i}(x),y_{j}(x)\right\rangle_{w;(a,b)}=\delta_{ij}\equiv\left\{\begin{aligned}&1 & &i=j \cr&0 & &i\neq j\end{aligned}\right.\)
Answer
正交性(Orthogonality)和规范性(Normality)

statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Definition of the orthonormality of a funciton
在数学中,函数的正交规范性是用来描述一组函数具有两个关键特性:正交性(Orthogonality)和规范性(Normality)的术语: If \(y_{i}(x),y_{j}(x)\) are "orthonormal" if \(\left\langle y_{i}(x),y_{j}(x)\right\rangle_{w;(a,b)}=\delta_{ij}\equiv\left\{\begin{aligned}&1 & &i=j \cr&0 & &a







Definition of Kronecker delta function
In mathematics, the Kronecker delta is a function of two variables, usually just non-negative integers: The function is 1 if the variables are equal, and 0 otherwise:\(\delta_{ij}\equiv\left\{\begin{aligned}&1 & &i=j \cr&0 & &i\neq j\end{aligned}\right.\)
statusnot read reprioritisations
last reprioritisation on suggested re-reading day
started reading on finished reading on




Flashcard 7602870291724

Question
In mathematics, the Kronecker delta is a function of two variables, usually just non-negative integers: [...]
Answer
The function is 1 if the variables are equal, and 0 otherwise:\(\delta_{ij}\equiv\left\{\begin{aligned}&1 & &i=j \cr&0 & &i\neq j\end{aligned}\right.\)

statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Definition of Kronecker delta function
In mathematics, the Kronecker delta is a function of two variables, usually just non-negative integers: The function is 1 if the variables are equal, and 0 otherwise:\(\delta_{ij}\equiv\left\{\begin{aligned}&1 & &i=j \cr&0 & &i\neq j\end{aligned}\right.\)







Spring
statusnot read reprioritisations
last reprioritisation on suggested re-reading day
started reading on finished reading on

pdf

cannot see any pdfs




Appendix C: Auto-configuration Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê879 .C.1. spring-boot-autoconfigure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê879 .C.2. spring-boot-actuator-autoconfigure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê884 Appendix D: Test Auto-configuration Annotations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê888 .D.1. Test Slices . . . . .
statusnot read reprioritisations
last reprioritisation on suggested re-reading day
started reading on finished reading on

pdf

cannot see any pdfs




Clean Code
statusnot read reprioritisations
last reprioritisation on suggested re-reading day
started reading on finished reading on

pdf

cannot see any pdfs




to jest opis annotacji
Robert C. Martin Series
statusnot read reprioritisations
last reprioritisation on suggested re-reading day
started reading on finished reading on

pdf

cannot see any pdfs




Developer Ecosystem surveys are a great way to find and analyze the ground reality that is often in contrast to what seems popular or trending. It is interesting to note that more developers are using Java 17 in production
statusnot read reprioritisations
last reprioritisation on suggested re-reading day
started reading on finished reading on

Unknown title
ystem 2023 English Java Java Share: These questions were only shown to respondents who chose Java as one of their three primary programming languages. Mala Gupta Developer Advocate at JetBrains <span>Developer Ecosystem surveys are a great way to find and analyze the ground reality that is often in contrast to what seems popular or trending. It is interesting to note that more developers are using Java 17 in production than Java 11, as well as the rise of Docker as a preferred option to package web applications. The margin with which Spring and Spring Boot lead the usage is huge! Which versions of Jav