on 05-Dec-2023 (Tue)

Annotation 7602838572300

 Definition of the norm of the function For a function, the norm of the function is defined as the square root of the inner product of the function: $$||f(x)||:=\sqrt{\left\langle f(x),f(x)\right\rangle}=\sqrt{\int^{x=b}_{x=a}|f(x)|^{2}dx}$$

Annotation 7602842504460

 Definition of Unit norm of a function If a function $$f(x)$$ has unit norm, then: $$||y(x)||=1$$

Flashcard 7602844339468

Question

If a function $$f(x)$$ has unit norm, then: [...]

$$||y(x)||=1$$

status measured difficulty not learned 37% [default] 0

Definition of Unit norm of a function
If a function $$f(x)$$ has unit norm, then: $$||y(x)||=1$$

Flashcard 7602845912332

Question

If a function $$f(x)$$ has [...], then: $$||y(x)||=1$$

unit norm

status measured difficulty not learned 37% [default] 0

Definition of Unit norm of a function
If a function $$f(x)$$ has unit norm, then: $$||y(x)||=1$$

Flashcard 7602848795916

Question
For a function, the norm of the function is defined as [...]
the square root of the inner product of the function: $$||f(x)||:=\sqrt{\left\langle f(x),f(x)\right\rangle}=\sqrt{\int^{x=b}_{x=a}|f(x)|^{2}dx}$$

status measured difficulty not learned 37% [default] 0

Definition of the norm of the function
For a function, the norm of the function is defined as the square root of the inner product of the function: $$||f(x)||:=\sqrt{\left\langle f(x),f(x)\right\rangle}=\sqrt{\int^{x=b}_{x=a}|f(x)|^{2}dx}$$

Annotation 7602850368780

 Definition of the orthogonality of a function 在数学中，函数的正交性是用来描述一组函数具有的一种关键关系，这种关系意味着这组函数在某种意义上是互相独立的。 在函数空间中，两个函数$$f_{i}(x),f_{j}(x)$$被称为正交的，如果它们的内积为零：$$\left\langle f_{i}(x),f_{j}(x)\right\rangle=0$$

Flashcard 7602852990220

Question

status measured difficulty not learned 37% [default] 0

Definition of the orthogonality of a function

Flashcard 7602856398092

Question

status measured difficulty not learned 37% [default] 0

Definition of the orthogonality of a function

Annotation 7602859543820

 Definition of the orthonormality of a funciton 在数学中，函数的正交规范性是用来描述一组函数具有两个关键特性：正交性（Orthogonality）和规范性（Normality）的术语： If $$y_{i}(x),y_{j}(x)$$ are "orthonormal" if \left\langle y_{i}(x),y_{j}(x)\right\rangle_{w;(a,b)}=\delta_{ij}\equiv\left\{\begin{aligned}&1 & &i=j \cr&0 & &i\neq j\end{aligned}\right.

Flashcard 7602862165260

Question

If $$y_{i}(x),y_{j}(x)$$ are "orthonormal" if [...]
\left\langle y_{i}(x),y_{j}(x)\right\rangle_{w;(a,b)}=\delta_{ij}\equiv\left\{\begin{aligned}&1 & &i=j \cr&0 & &i\neq j\end{aligned}\right.

status measured difficulty not learned 37% [default] 0

Definition of the orthonormality of a funciton

Flashcard 7602864000268

Question

If $$y_{i}(x),y_{j}(x)$$ are "orthonormal" if \left\langle y_{i}(x),y_{j}(x)\right\rangle_{w;(a,b)}=\delta_{ij}\equiv\left\{\begin{aligned}&1 & &i=j \cr&0 & &i\neq j\end{aligned}\right.

status measured difficulty not learned 37% [default] 0

Definition of the orthonormality of a funciton

Flashcard 7602870291724

Question
In mathematics, the Kronecker delta is a function of two variables, usually just non-negative integers: [...]
The function is 1 if the variables are equal, and 0 otherwise:\delta_{ij}\equiv\left\{\begin{aligned}&1 & &i=j \cr&0 & &i\neq j\end{aligned}\right.

status measured difficulty not learned 37% [default] 0

Definition of Kronecker delta function
In mathematics, the Kronecker delta is a function of two variables, usually just non-negative integers: The function is 1 if the variables are equal, and 0 otherwise:\delta_{ij}\equiv\left\{\begin{aligned}&1 & &i=j \cr&0 & &i\neq j\end{aligned}\right.

 Spring

pdf

cannot see any pdfs

Annotation 7603645975820

 Appendix C: Auto-configuration Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê879 .C.1. spring-boot-autoconfigure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê879 .C.2. spring-boot-actuator-autoconfigure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê884 Appendix D: Test Auto-configuration Annotations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê888 .D.1. Test Slices . . . . .

pdf

cannot see any pdfs

Annotation 7604014812428

 Clean Code

pdf

cannot see any pdfs

Annotation 7604017171724

 to jest opis annotacji Robert C. Martin Series

pdf

cannot see any pdfs

Annotation 7604023463180

 Developer Ecosystem surveys are a great way to find and analyze the ground reality that is often in contrast to what seems popular or trending. It is interesting to note that more developers are using Java 17 in production