# on 12-Mar-2024 (Tue)

#### Flashcard 7620128017676

Question

• 发射极（Emitter）：\begin{align}I_{E}&=I_{S}\left(e^{\frac{qV_{BE}}{KT}}-1\right)\approx I_{S}e^{\frac{qV_{BE}}{KT}}=I_{S}e^{\frac{V_{BE}}{V_{T}}}\\&=I_{C}+I_{B}=(\beta+1)I_{B}\end{align}
• 集极（Collector）：\begin{align}I_{C}&=\alpha I_{E}=\alpha I_{S}e^{\frac{V_{BE}}{V_{T}}}\\&=\beta I_{B}\end{align}
• 基极（Base）：$$I_{B}=I_{E}-I_{C}=(1-\alpha)I_{E}=(1-\alpha)I_{S}e^{\frac{V_{BE}}{V_{T}}}$$

status measured difficulty not learned 37% [default] 0

#### Flashcard 7620129852684

Tags
#has-images
Question

• 共基极电路（Common Base）
• 共射极电路（Common Emitter）
• 共集极电路（Common Collector）

status measured difficulty not learned 37% [default] 0

#### Flashcard 7620134833420

Question

BJT各种配置电路伏安特性推导思路：[...]

status measured difficulty not learned 37% [default] 0

#### Flashcard 7620136668428

Question

• 电流增益较低：$$I_{C}\cong I_{E}$$，意味着$$\displaystyle \alpha= \frac{I_{C}}{I_{E}}\cong1$$.
• 输入阻抗小，输出阻抗大，适合用作电压放大（Voltage Amplification）

status measured difficulty not learned 37% [default] 0

#### Flashcard 7620138765580

Question
BJT共基极配置电路输入伏安特性：[...]
BJT共基极配置电路的输入电流为$$I_E$$，伏安特性为$$I_E = I_S (e^{V_{BE}/V_T}-1)$$

status measured difficulty not learned 37% [default] 0

#### Flashcard 7620140600588

Question
BJT共基极配置电路激活区输出伏安特性：[...]
BJT共基极配置电路的输出电流为$$I_C$$，其激活区的伏安特性为$$I_C = \alpha I_E$$

status measured difficulty not learned 37% [default] 0

#### Flashcard 7620142697740

Question
BJT共射极配置电路输入伏安特性：[...]
BJT共射极配置电路的输入电流为$$I_B$$，伏安特性为$$\displaystyle I_B = \frac{I_E}{\beta+1} = \frac{I_S}{\beta+1}(e^{V_{BE}/V_T}-1)$$

status measured difficulty not learned 37% [default] 0

#### Flashcard 7620145319180

Question
BJT共射极配置电路激活区输出伏安特性：[...]
BJT共射极配置电路为$$I_C$$，其激活区伏安特性为$$I_C = \beta I_B$$

status measured difficulty not learned 37% [default] 0

#### Flashcard 7620147940620

Question

1. EBJ必须要正向偏置（$$V_{BE}\approx 0.6V\sim 0.7V$$
2. CBJ必须要反向偏置（$$V_{BC}$$只要小于设备极限值即可）

status measured difficulty not learned 37% [default] 0

#### Flashcard 7620149775628

Question

BJT放大电路的DC分析的目的是给定放大电路的电源电压$$V_{CC}$$和偏置电阻，计算放大电路工作点的分析过程。其具体步骤为：

1. 将电路中的电容替换为开路，把同一电源分开，画出DC等效电路
2. 对DC等效电路中的输入环（Input loop）和输出环（Output loop）分别应用KVL进行分析
3. $$V_{BE}$$视为0.7V，计算$$I_{B}\rightarrow I_{C}\rightarrow V_{CE}$$.
- 当输出环中$$V_{CE}=0$$时，集极饱和电流$$I_{C}=I_{Csat}$$.

status measured difficulty not learned 37% [default] 0

#### Flashcard 7620152397068

Question

1. 固定偏置（Fixed-Biasing）：最简单的偏置方法
2. 发射极偏置（Emitter Biasing）：相对于固定偏置，BJT工作点更加稳定
3. 分压器偏置（Voltage Divider Biasing）：相对于其他偏置方法，BJT工作点更加稳定

status measured difficulty not learned 37% [default] 0

#### Flashcard 7620154232076

Tags
#has-images
Question
BJT放大电路固定偏置电路图：[...]

status measured difficulty not learned 37% [default] 0

#### Flashcard 7620157902092

Tags
#has-images
Question
BJT放大电路发射极偏置电路图：[...]

status measured difficulty not learned 37% [default] 0

#### Flashcard 7620162358540

Tags
#has-images
Question
BJT放大电路分压器偏置电路图：[...]

status measured difficulty not learned 37% [default] 0

#### Flashcard 7620166028556

Question
BJT分压器偏置的精确分析方法可以计算出分压器偏置放大器电路准确的工作点，主要由以下步骤构成：[...]

1. 将电路替换成DC等效电路，同时使用戴维南等效电路方法获得等效电阻$$R_{Th}$$和等效电压源$$V_{Th}$$
2. 对DC等效电路中的输入环（Input loop）和输出环（Output loop）分别应用KVL进行分析
1. Input loop: $$\displaystyle I_{B}=\frac{E_{Th}-V_{BE}}{R_{Th}+(\beta+1)R_{E}}$$
2. Output loop: $$\begin{array}{c}I_{C}=\beta I_{B}\\V_{CE}=V_{CC}-I_{C}(R_{C}+R_{E})\end{array}$$
3. $$V_{BE}$$视为0.7V，计算$$I_{B}\rightarrow I_{C}\rightarrow V_{CE}$$.
1. 当输出环中$$V_{CE}=0$$时，集极饱和电流$$I_{C}=I_{Csat}$$.

status measured difficulty not learned 37% [default] 0

#### Flashcard 7620168125708

Tags
#has-images
Question
BJT分压器偏置的近似分析方法可以将电路中的BJT转化为等效电路元件来简化电路分析，不过BJT近似分析方法只有在特定条件下（$$\beta R_{E}\geq10R_{2}$$）才成立，主要由以下步骤构成：[...]

$$\beta R_{E}\geq10R_{2}$$时，我们可以直接用等效电路计算$$V_{B}$$$$\displaystyle V_{B}=\frac{R_{2}V_{CC}}{R_{1}+R_{2}}$$

$$\begin{array}{c}V_{B}\\\downarrow\\V_{E}=V_{B}-V_{BE}(0.7V)\\\downarrow\\I_{E}=\displaystyle\frac{V_{E}}{R_{E}}\approx I_{C}\\\downarrow\\V_{CE}=V_{CC}-I_{C}(R_{C}+R_{E})\end{array}$$

status measured difficulty not learned 37% [default] 0

#### Flashcard 7620172320012

Question

• 输入阻抗（Input Impedance）
• 输出阻抗（Output Impedance）
• 电压增益（Voltage Gain）以及
• 电流增益（Current Gain）

status measured difficulty not learned 37% [default] 0

#### Flashcard 7620174417164

Tags
#has-images
Question

status measured difficulty not learned 37% [default] 0

#### Flashcard 7620178087180

Question

1. 对电路进行DC分析，使用得到的$$I_{C}$$计算BJT混合π模型的跨导（Trans-conductance）$$\displaystyle g_{m}= \frac{I_{C}}{V_{T}}$$和BJT输入阻抗$$\displaystyle r_{\pi}= \frac{\beta}{g_{m}}$$.
1. 电路输入阻抗：$$\displaystyle Z_{i}= \frac{v_{i}}{i_{i}}$$.
2. 电路输出阻抗：$$\displaystyle Z_{o}= \frac{v_{o}}{i_{o}}$$.
3. 电路电压增益：$$\displaystyle A_{v}= \frac{v_{o}}{v_{i}}$$.