Edited, memorised or added to reading queue

on 20-Sep-2024 (Fri)

Do you want BuboFlash to help you learning these things? Click here to log in or create user.

Flashcard 7625206795532

Tags
#bayesian #stan
Question
The Stan development crew has made it easy to interactively explore diagnostics via the shinystan package, and one should do so with each model. In addition, there are other diagnostics available in other packages like [...] and posterior.
Answer
loo

statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Stan - diagnostic packages
has made it easy to interactively explore diagnostics via the shinystan package, and one should do so with each model. In addition, there are other diagnostics available in other packages like <span>loo and posterior. <span>







Flashcard 7626535079180

Tags
#deep-learning #has-images #keras #lstm #python #sequence
[unknown IMAGE 7104082873612]
Question
LSTMs work by learning a function ( f( ) that [...] input sequence values ( X ) onto output sequence values (y)
Answer
maps

statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Parent (intermediate) annotation

Open it
LSTMs work by learning a function ( f(...) ) that maps input sequence values ( X ) onto output sequence values (y)

Original toplevel document (pdf)

cannot see any pdfs







Flashcard 7626538224908

Tags
#deep-learning #keras #lstm #python #sequence
Question
Sequence generation involves generating a new output sequence that has the same [...] as other sequences in the corpus. For example: Input Sequence: [1, 3, 5], [7, 9, 11] Output Sequence: [3, 5 ,7]
Answer
general characteristics

statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Parent (intermediate) annotation

Open it
Sequence generation involves generating a new output sequence that has the same general characteristics as other sequences in the corpus. For example: Input Sequence: [1, 3, 5], [7, 9, 11] Output Sequence: [3, 5 ,7]

Original toplevel document (pdf)

cannot see any pdfs







#include "filename"

➜Search for filename in compiler’s include path and directory of the source file

statusnot read reprioritisations
last reprioritisation on suggested re-reading day
started reading on finished reading on

pdf

cannot see any pdfs




#include "path/to/filename"

➜ Search for path/to/filename in include and source path

statusnot read reprioritisations
last reprioritisation on suggested re-reading day
started reading on finished reading on

pdf

cannot see any pdfs




Stapeladressierung hat sehr kurze Befehle
statusnot read reprioritisations
last reprioritisation on suggested re-reading day
started reading on finished reading on


Parent (intermediate) annotation

Open it
Stapeladressierung Hier ist gar keine Adressangabe notwendig Stapeladressierung Somit sind die Instruktionen sehr kurz Stapeladressierung Hier ist gar keine Adressangabe notwendig Somit sind die Instruktionen sehr kurz Die Stapeladressierung arbeitet mit der umgekehrten polnischen Notation (Postfix) </s

Original toplevel document

Grundprinzipien der Rechnerarchitektur
auf. Ein DMA-Controller wirkt wie ein weiterer Prozessor am Bus. Um Inkonsistenzen im Speicher zu vermeiden, muss ein DMA-Controller eng mit dem Speichermanagment des Systems zusammenarbeiten. <span>Was ist Memory-Mapped I/O? Ein I/O Controller besteht aus einer Vielzahl von Registern, welche auf zwei Varianten adressiert werden können: Memory-Mapped I/O, um den konventionellen Adressraum verschiedenen I/O-Devices zuzuordnen oder Getrennten I/O Adressraum, bei dem auf einer speziellen Adressleitung die E/A-Adresse auf den Bus gelegt wird. (veraltete Variante) Was ist eine Task? Ein Task ist ein eigenständiges Programm / Prozess von vielen im Multitasksystem. Es wird von einem TSS (Task State Segment) beschrieben. Bei einem Taskwechsel werden alle Informationen in diesem TSS gespeichert. Jeder TSS-Deskriptor steht in der GDT. Die GDT hat beim i486 8192 Einträge, jedoch ist der 0. Eintrag immer leer. Somit sind maximal 8191 verschiedene Prozesse möglich (inclusive des Betriebssystems). Wie werden Task-Wechsel realisiert? Ein Taskwechsel geschieht durch Auswahl eines Task-Gates aus Globaler Deskriptor Tabelle (Task State Segment = TSS). Ein TSS Enthält alle Informationen, die einen Task ausmachen: verwendete Prozessor-Register LDT-Selektor (einer Pro Task) welche die Segment-Deskriptoren des Prozesses enthält Stack-Segment-Pointer Verwaltungsinformation Adresse der Paging-Tabellen I/O-Map Base Adresse Busy-Bit, definiert den aktuell rechnenden Task (genau einer im System) TR (Task Register) enthält den aktuellen TSS (Selektor des Descriptors des aktuellen TSS) TSS-Descriptoren nur in GDT! Bsp: Scheduler als Task ( Umschalter ) Umschalten durch jeweiligen Austausch des Back-Link, IRETD zum anderen Task, z.B. Timer-Interrupt-Task. Welche Möglichkeiten für Privilegwechsel gibt es? CALL in eine Prozedur mit anderen Privilegde-Level (CALL-Gate) JMP in eine Prozedur mit anderen Privi legde-Level (TASK-Gate) INT (TRAP-Gate) TASK-Gate durch erzwungenen Prozeßwechsel IRET Rücksprung aus INT-Handler Was ist der Unterschied zwischen einem Selektor und einem Deskriptor? Ein Selektor Segment-Register wählt einen Deskriptor in (GLI)DT aus, ein Deskriptor Eintrag in (GLI)DT, beschreibt das Segment. Weshalb ist es sinnvoll, dass ein TSS-Descriptor nur in der GDT stehen darf? Es soll verhindert werden, daß ein USER-Programm in einen anderen Task springt. Da Taskwechsel nur über TASK-Gates erfolgen (dieses zeigt auf einen TSS-Deskriptor) muß der CurrentPrivilegdeLevel (CPL vom CS:) numerisch kleiner sein, als das des geforderten TSS-Deskriptor (DPL) bzw. kleiner als der (RPL) des Segments wo sich der TSS-Deskriptor aufhält. Damit wird sichergestellt, daß der Taskwechsel nur von "höherem" Code (OS) aus ausgeführt werden kann. Würde ein TSS-Deskriptor in der LDT stehen, könnte es dort mit einem höheren RPL versehen werden, und der USER-Code könnte sich zum OS-CODE etablieren! Welche Grundtypen von Deskriptoren gibt es? IDT LDT GDT CODE-Segment DATA-Segment STACK-Segment CODE-Segment DATA-Segment STACK-Segment INT-Gate TRAP-Gate TASK-Gate TASK-Gate TASK-Gate CALL-Gate Welche grundlegenden Adressierungsarten gibt es? Unmittelbare Adressierung Direktadressierung (Direct Adressing) Registeradressierung Indirekte Registeradressierung Indizierte Adressierung Basisindizierte Adressierung Stapeladressierung Unmittelbare Adressierung Der Adressteil der Instruktion enthält den Operanden selbst, anstatt eines Verweises. Solche Operanden werden als Direktoperanden (Immediate) bezeichnet Bsp: MOV R4, 5H (5H wird direkt in R4 gespeichert) Direktadressierung (Direct Adressing) Es wird eine volle Adresse des Operanden angegeben Deshalb nur für globale Variablen anwendbar, da Instruktion immer auf gleiche Speicehrzeile zugreift Registeradressierung Das gleiche Prinzip wie Direct Adressing, nur das Register anstelle von Speicherzellen verwendet werden In Registern sollten die am häufigsten verwendeten Variablen abgelegt werden, da Register vielfach schneller als Hauptspeicher sind Load/Store-Architekturen nutzen fast nur diesen Registermode (außer es muss vom oder zum Speicher transferiert werden) Indirekte Registeradressierung Die Adresse wird nicht direkt angegeben, sondern indirekt über ein Register Das Register enthält somit einen Pointer auf eine Speicherzelle Vorteil ist, daß auf Speicher referenziert werden kann, aber keine volle Speicheradresse notwendig wird Indizierte Adressierung Der Speicher wird durch Angabe eines Registers und eines konstanten Offsets adressiert Häufig benutzt bei Arrayzugriffen, wie A = B[i] (MOV R1, B[R2]) Basisindizierte Adressierung Speicheradresse wird hier durch Addition zweier Register und einen optionalen Offset berechnet Eines der Register stellt die Basis dar und ein anderes den Index Stapeladressierung Hier ist gar keine Adressangabe notwendig Somit sind die Instruktionen sehr kurz Die Stapeladressierung arbeitet mit der umgekehrten polnischen Notation (Postfix) Kapitel 3 - Speicherschutz und Multitasking Um unberechtigte Zugriffe, Datenaufrufe oder Systemprozedurecalls zu vermeiden und Task-Isolation zu gewährleisten, ist ein ausgeklügeltes Sp





#has-images
statusnot read reprioritisations
last reprioritisation on suggested re-reading day
started reading on finished reading on





#has-images
statusnot read reprioritisations
last reprioritisation on suggested re-reading day
started reading on finished reading on




Flashcard 7657025309964

Question
Sind alle Registerfenster voll, wird das Älteste [...], was von Trap-Routinen erledigt wird.
Answer
in den Speicher ausgelagert

statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Parent (intermediate) annotation

Open it
gistern sind nach sieben Prozeduraufrufen alle Register gefüllt. Um ein Überlaufen zu vermeiden, wird das Register als Ringregister organisiert. Sind alle Registerfenster voll, wird das Älteste <span>in den Speicher ausgelagert, was von sogenannten Trap-Routinen erledigt wird. <span>

Original toplevel document

Grundprinzipien der Rechnerarchitektur
er liegen, werden in kontinuierlicher Folge abgespeichert. Gepaart mit multiple branch prediction können mehrere zusammenhängende Basisblöcke parallel gefetched werden. (ergibt hohe issue rate) <span>Kapitel 5 - Risc Wie berechnet sich die Prozessorleistung? Die Prozessorleistung ist umgekehrt proportional zur Ausführungszeit eines Algorithmus und wird aus folgenden drei Parametern ermittelt: Worum geht es im Besonderen bei einer Risc-Architektur? RISC Architekturen sind darauf aus, die Cycles Per Instruction zu minimieren. Das heißt, es wird versucht alle Befehle mit so wenig wie möglich Takten auszuführen. Welche architektonischen Möglichkeiten gibt es zur Veringerung der CPI? Piplining ergibt eine CPI > 1, andere Techniken wie Superskalarität und VLIW's haben Ausführungszeiten von kleiner als eins. Kombiniert ergeben beide Ansätze eine nahezuhe Ausführung von einem Befehl pro Takt. Desweiteren ermöglicht der kleine Befehlssatz von RISC eine festverdrahtete Steuereinheit, anstatt von Mikroprogrammen, welche höhere Taktzahlen pro Befehl mit sich bringen. Desweiteren muss bei einem Risc-Befehl nicht der Op-Code dekodiert werden, um herauszufinden, wie der Befehl zu entschlüsseln ist, da alle Befehle die gleiche Struktur besitzen. Auf welche vier Merkmale wird beim RISC-Design-Entwurf besonders geachtet? einfache Maschinenbefehle und Adressierungsarten mit einheitlichen Befehlsformat große und universelle Registersätze, für schnelle Variablenverarbeitung und größere Optimiermöglichkeiten für Compiler Verzahnung von Compiler und Architektur zur Bereitstellung von optimierenden Compilern Optimierte VLSI-Chipfläche durch platzsparende Steuerwerke schafft mehr Platz für Optimiertechniken wie Pipelining,Branch-Prediction oder Superskalarität Techniken zur Ablaufparallelisierung für RISC-Kerne Parallelität von einzelnen Befehlsphasen durch Pipelining Parallelität von ganzen Befehlen durch Superskalartechnik und VLIW Parallelität von Kodefäden durch Multithreading (programmierte Parallelität) oder Multiskalarität (Hardwarethreaderkennung) Parallelität von Befehlen unabhängiger Algorithmen (Multiprozessorsysteme) Pentium 4 Prozessor Kern Load / Store Architektur und Lokalhalten von Daten Da Speicherzugriffe in Pipelines starke Konflikte hervorrufen, gibt es bei RISC-Befehlssätzen nur eine einzige Möglichkeit mit LOAD bzw. STORE auf den Speicher zuzugreifen. So werden Registerzugriffe von Speicherzugriffen getrennt. Da Speicherzugriffe bekanntermaßen immer sehr viel Zeit kosten, versucht man diese so weit wie möglich zu vermeiden. Dies Erreicht man durch Lokalhalten von Daten, bzw. das Arbeiten auf den Registern. Was sind Registerfenster? Registerfenster sollen das Lokalhalten von Daten unterstützen. Typische RISC Prozessoren wie die Berkeley RISC besitzen weit über 100 Register, von denen aber immer nur 32 für sichtbar sind: R0...R9 globale Register R10...R15 Ausgaberegister R16...R25 lokale Register R26...R31 Eingaberegister Die Idee ist nun, daß die ersten 10 Register von allen Prozeduren gesehen werden. Die Restlichen von R10 bis R31 sind jeweils nur einer Prozedur zugeordnet. Falls nun eine Prozedur eine andere aufruft, wird nur das "Fenster" auf einen freien Registerbereich umgeschaltet. So müssen die Register nicht neu aus dem Speicher geladen werden und es wird dadurch viel Zeit gespart. Normalerweise überlappen sich die einzelnen Fenster um einige Register, um somit gleich eine effiziente Möglichkeit der Parameterweitergabe zu bieten. Was passiert wenn alle Registerfenster voll sind? Bei unserem Beispiel mit 138 Registern sind nach sieben Prozeduraufrufen alle Register gefüllt. Um ein Überlaufen zu vermeiden, wird das Register als Ringregister organisiert. Sind alle Registerfenster voll, wird das Älteste in den Speicher ausgelagert, was von sogenannten Trap-Routinen erledigt wird. Was sind Superpipelines? Superpipes vereinen Arithmetisches und Befehlspipelining. Arithmetisches Pipelining ist sogenanntes Funktionspipelining, bei dem einzelne Phasen eines Befehles in einer Pipeline-Form organisiert werden. Bei Instruction Pipelining wird die Abarbeitung eines gesamten Befehls in einer Pipeline organisiert. Zusammenfassung Risc Einfachere Befehlssätze mit ca. 40-80 Befehlstypen Einfachere Steuerung durch die Hardware ohne Mikroprogramme Effizientere Pipelines durch gleichlange, eintaktige Stufen Befehle können meist in einem Takt ausgeführt werden Datenzugriffe nur durch Load und Store um Speicherzugriffe zu vermeiden Mehr Register und Optimierung des Befehlssatzes durch Compiler Typische Riscsysteme haben eine hartverdrahtete Steuereinheit und somit keinen Mikrocodespeicher. Der Pentium ist ein "hybrid"-System mit RISC Kern. Dabei werden komplexe CISC Befehle durch ein Mikroprogramm in RISC zerlegt und im Kern ausgeführt. Die einfachen Befehle werden direkt im RISC Kern in einem einzigen Datenzyklus ausgeführt. Alle wichtigen elementaren (Risc) Befehle werden direkt von Level 0 ( der Hardware ) ausgeführt und somit nicht via Mikroinstruktionen interpretiert. Dies ist ein Vorteil von reinen RISC Systemen, welche diese Interpretationsebene zwischen Hardware und ISA (Instruction Set Architecture) Ebene nicht durchlaufen müssen. Mikroinstruktionen steuern den Datenweg für einen Zyklus. Sie enthält alle notwendigen Bit-Belegungen für ALU, MEM, Register etc., um einen Zyklus abarbeiten lassen zu können. Die Adresse der nächsten Mikroinstruktion wird ebenso mit codiert, wie die Art und Weise des Aufrufes. Die Mikroinstruktionen werden in einem Steuerspeicher gehalten, welcher das jeweilige Mikroprogramm enthält. Der Steuerspeicher muss die Mikroinstruktionen nicht in geordneter oder sequentieller Folge enthalten, wie es beim Hauptspeicher der Fall ist. Es kann jede Instruktion einen Verweis auf die Nächste enthalten. Sprünge sind einfach möglich. Angewandt wird dies in Form von Opcodes, welche nichts anderes als Adressen auf Mikroinstruktionen im Steuerspeicher sind. Kapitel 6 - Pipelining Wozu dient Pipelining? Pipelining soll es ermöglichen Befehle überlappt auszuführen. Dazu sind ein einheitliches Befehlsformat fester Länge Grundlage. Deshalb wer







Flashcard 7657026882828

Question
Sind alle Registerfenster voll, wird das Älteste in den Speicher ausgelagert, was von [...] erledigt wird.
Answer
sogenannten Trap-Routinen

statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Parent (intermediate) annotation

Open it
ufen alle Register gefüllt. Um ein Überlaufen zu vermeiden, wird das Register als Ringregister organisiert. Sind alle Registerfenster voll, wird das Älteste in den Speicher ausgelagert, was von <span>sogenannten Trap-Routinen erledigt wird. <span>

Original toplevel document

Grundprinzipien der Rechnerarchitektur
er liegen, werden in kontinuierlicher Folge abgespeichert. Gepaart mit multiple branch prediction können mehrere zusammenhängende Basisblöcke parallel gefetched werden. (ergibt hohe issue rate) <span>Kapitel 5 - Risc Wie berechnet sich die Prozessorleistung? Die Prozessorleistung ist umgekehrt proportional zur Ausführungszeit eines Algorithmus und wird aus folgenden drei Parametern ermittelt: Worum geht es im Besonderen bei einer Risc-Architektur? RISC Architekturen sind darauf aus, die Cycles Per Instruction zu minimieren. Das heißt, es wird versucht alle Befehle mit so wenig wie möglich Takten auszuführen. Welche architektonischen Möglichkeiten gibt es zur Veringerung der CPI? Piplining ergibt eine CPI > 1, andere Techniken wie Superskalarität und VLIW's haben Ausführungszeiten von kleiner als eins. Kombiniert ergeben beide Ansätze eine nahezuhe Ausführung von einem Befehl pro Takt. Desweiteren ermöglicht der kleine Befehlssatz von RISC eine festverdrahtete Steuereinheit, anstatt von Mikroprogrammen, welche höhere Taktzahlen pro Befehl mit sich bringen. Desweiteren muss bei einem Risc-Befehl nicht der Op-Code dekodiert werden, um herauszufinden, wie der Befehl zu entschlüsseln ist, da alle Befehle die gleiche Struktur besitzen. Auf welche vier Merkmale wird beim RISC-Design-Entwurf besonders geachtet? einfache Maschinenbefehle und Adressierungsarten mit einheitlichen Befehlsformat große und universelle Registersätze, für schnelle Variablenverarbeitung und größere Optimiermöglichkeiten für Compiler Verzahnung von Compiler und Architektur zur Bereitstellung von optimierenden Compilern Optimierte VLSI-Chipfläche durch platzsparende Steuerwerke schafft mehr Platz für Optimiertechniken wie Pipelining,Branch-Prediction oder Superskalarität Techniken zur Ablaufparallelisierung für RISC-Kerne Parallelität von einzelnen Befehlsphasen durch Pipelining Parallelität von ganzen Befehlen durch Superskalartechnik und VLIW Parallelität von Kodefäden durch Multithreading (programmierte Parallelität) oder Multiskalarität (Hardwarethreaderkennung) Parallelität von Befehlen unabhängiger Algorithmen (Multiprozessorsysteme) Pentium 4 Prozessor Kern Load / Store Architektur und Lokalhalten von Daten Da Speicherzugriffe in Pipelines starke Konflikte hervorrufen, gibt es bei RISC-Befehlssätzen nur eine einzige Möglichkeit mit LOAD bzw. STORE auf den Speicher zuzugreifen. So werden Registerzugriffe von Speicherzugriffen getrennt. Da Speicherzugriffe bekanntermaßen immer sehr viel Zeit kosten, versucht man diese so weit wie möglich zu vermeiden. Dies Erreicht man durch Lokalhalten von Daten, bzw. das Arbeiten auf den Registern. Was sind Registerfenster? Registerfenster sollen das Lokalhalten von Daten unterstützen. Typische RISC Prozessoren wie die Berkeley RISC besitzen weit über 100 Register, von denen aber immer nur 32 für sichtbar sind: R0...R9 globale Register R10...R15 Ausgaberegister R16...R25 lokale Register R26...R31 Eingaberegister Die Idee ist nun, daß die ersten 10 Register von allen Prozeduren gesehen werden. Die Restlichen von R10 bis R31 sind jeweils nur einer Prozedur zugeordnet. Falls nun eine Prozedur eine andere aufruft, wird nur das "Fenster" auf einen freien Registerbereich umgeschaltet. So müssen die Register nicht neu aus dem Speicher geladen werden und es wird dadurch viel Zeit gespart. Normalerweise überlappen sich die einzelnen Fenster um einige Register, um somit gleich eine effiziente Möglichkeit der Parameterweitergabe zu bieten. Was passiert wenn alle Registerfenster voll sind? Bei unserem Beispiel mit 138 Registern sind nach sieben Prozeduraufrufen alle Register gefüllt. Um ein Überlaufen zu vermeiden, wird das Register als Ringregister organisiert. Sind alle Registerfenster voll, wird das Älteste in den Speicher ausgelagert, was von sogenannten Trap-Routinen erledigt wird. Was sind Superpipelines? Superpipes vereinen Arithmetisches und Befehlspipelining. Arithmetisches Pipelining ist sogenanntes Funktionspipelining, bei dem einzelne Phasen eines Befehles in einer Pipeline-Form organisiert werden. Bei Instruction Pipelining wird die Abarbeitung eines gesamten Befehls in einer Pipeline organisiert. Zusammenfassung Risc Einfachere Befehlssätze mit ca. 40-80 Befehlstypen Einfachere Steuerung durch die Hardware ohne Mikroprogramme Effizientere Pipelines durch gleichlange, eintaktige Stufen Befehle können meist in einem Takt ausgeführt werden Datenzugriffe nur durch Load und Store um Speicherzugriffe zu vermeiden Mehr Register und Optimierung des Befehlssatzes durch Compiler Typische Riscsysteme haben eine hartverdrahtete Steuereinheit und somit keinen Mikrocodespeicher. Der Pentium ist ein "hybrid"-System mit RISC Kern. Dabei werden komplexe CISC Befehle durch ein Mikroprogramm in RISC zerlegt und im Kern ausgeführt. Die einfachen Befehle werden direkt im RISC Kern in einem einzigen Datenzyklus ausgeführt. Alle wichtigen elementaren (Risc) Befehle werden direkt von Level 0 ( der Hardware ) ausgeführt und somit nicht via Mikroinstruktionen interpretiert. Dies ist ein Vorteil von reinen RISC Systemen, welche diese Interpretationsebene zwischen Hardware und ISA (Instruction Set Architecture) Ebene nicht durchlaufen müssen. Mikroinstruktionen steuern den Datenweg für einen Zyklus. Sie enthält alle notwendigen Bit-Belegungen für ALU, MEM, Register etc., um einen Zyklus abarbeiten lassen zu können. Die Adresse der nächsten Mikroinstruktion wird ebenso mit codiert, wie die Art und Weise des Aufrufes. Die Mikroinstruktionen werden in einem Steuerspeicher gehalten, welcher das jeweilige Mikroprogramm enthält. Der Steuerspeicher muss die Mikroinstruktionen nicht in geordneter oder sequentieller Folge enthalten, wie es beim Hauptspeicher der Fall ist. Es kann jede Instruktion einen Verweis auf die Nächste enthalten. Sprünge sind einfach möglich. Angewandt wird dies in Form von Opcodes, welche nichts anderes als Adressen auf Mikroinstruktionen im Steuerspeicher sind. Kapitel 6 - Pipelining Wozu dient Pipelining? Pipelining soll es ermöglichen Befehle überlappt auszuführen. Dazu sind ein einheitliches Befehlsformat fester Länge Grundlage. Deshalb wer







Flashcard 7657030028556

Question
No address arithmetic on void* because [...]
Answer
size of elements unknown

statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Parent (intermediate) annotation

Open it
Pointer type void void* a; // pointer variable with unspecified target type Assignment from any pointer type to void* valid No address arithmetic on void* because size of elements unknown Cast to non-void pointer required before usage: double* d[10]; a = &d; /* ↓ Derefence double* */ * (double*) a = 3.2; /* ↑ Cast a to double* */

Original toplevel document (pdf)

cannot see any pdfs







Flashcard 7657033174284

Question

Pointer type void

  • [...] required before usage:
Answer

Cast to non-void pointer

Example:

double* d[10];

a = &d;
/*
↓ Derefence double* */
* (double*) a = 3.2;
/*    ↑ Cast a to double*  */

statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Parent (intermediate) annotation

Open it
span> Pointer type void void* a; // pointer variable with unspecified target type Assignment from any pointer type to void* valid No address arithmetic on void* because size of elements unknown <span>Cast to non-void pointer required before usage: double* d[10]; a = &d; /* ↓ Derefence double* */ * (double*) a = 3.2; /* ↑ Cast a to double* */ <span>

Original toplevel document (pdf)

cannot see any pdfs







Flashcard 7657300036876

Question
[...]
➜Search for filename in compiler’s include path
Answer
#include <filename>

statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Parent (intermediate) annotation

Open it
#include <filename> ➜Search for filename in compiler’s include path

Original toplevel document (pdf)

cannot see any pdfs







Flashcard 7657301609740

Question
#include <filename>
➜Search for filename in [...]
Answer
compiler’s include path

statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Parent (intermediate) annotation

Open it
#include <filename> ➜Search for filename in compiler’s include path

Original toplevel document (pdf)

cannot see any pdfs







Flashcard 7657304755468

Question
Die [...] Sicherung ist bei Allzweckbetriebssystemen verbreitet.
Answer
totale

statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Parent (intermediate) annotation

Open it
Die totale Sicherung ist bei Allzweckbetriebssystemen verbreitet.

Original toplevel document

Grundprinzipien der Rechnerarchitektur
rt das Big-Endian-Format. Falls Worte so in den Speicher passen, das keine Verschiebungen auftreten, heißt der Speicher aligned. Prüfen kann man dies durch die Formel Adresse mod Wortlänge = 0? <span>Kapitel 2 - Interrupts und DMA Klassifizieren Sie die verschiedenen Unterbrechungen! Wenn in der Literatur von Interrupts gesprochen wird, so werden oft externe, asynchrone Interrupts gemeint, welche meistens in Zusammenhang mit E/A-Geräten auftreten. Wie arbeiten Traps (Fangstellen?) Traps sind eine Art automatische Prozeduraufrufe, welche durch eine vom Programm verursachte Bedingung eingeleitet werden. Solch eine Bedingung kann z.B. Gleitkommaüberlauf, Schutzverletzung oder Stapelüberlauf. Findet ein Überlauf statt, so stoppt die Ablaufsteuerung die Ausführung und holt von einer bestimmten Stelle im Speicher die Adresse des Trap-Handlers (Prozedur), mit der dann der Programmcounter überschrieben wird. Wesentliches Merkmal eines Traps ist, daß es durch Ausnahmebedingungen ausgelöst wird, welche durch Hardware oder Mikroprogramme erkannt werden. Wie arbeiten Interrupts Interrupts sind Unterbrechungen der Ablaufsteuerung. Wie es für Traps Trap-Handler gibt, gibt es für Interrupts Interrupt-Handler. Nach Abarbeitung des Interrupt-Handlers wird die Kontrolle wieder an das Programm zurückgegeben. Der interne Zustand des Prozessors (IP, Register, ...) muss nun exakt wiederhergestellt werden. Der Unterschied zwischen Traps und Interrupts ist nun, daß Traps synchron mit dem ausgeführten Programm laufen. Deshalb werden sie auch erst nach der Befehlsausführung erkannt und ausgeführt. Asynchrone Interrupts sind dagegen unabhängig vom gerade ausgeführten Programm. Interrupt’s stammen von echten physikalischen INT-Quellen wie z.B. IRQ3 von COM1 kommt. Diese springen über ein Interrupt-Gate. Interrupt’s die per Software mit INT-Befehl ausgelöst werden, springen über Trap-Gates! Wenn ein Interrupt ein Interrupt-Gate durchläuft, wird das IF=0 automatisch gesetzt, d.h. es gehen überhaupt keine Interrupts mehr durch. Asynchrone Interrupts können also nicht unterbrochen werden. Trap-Gates dürfen unterbrochen werden, da sie nicht zeitkritisch sind. Interrupt- und Trap-Gates führen nicht zu Taskwechsel über ein TSS. Das retten der Register ist dem INT-Handler überlassen. Was sind Software Interrupts? Software-Interrupts werden von Programmen mit Hilfe von speziellen Maschinenbefehlen aufgerufen. Dabei müssen diese nur eine Nummer für das benötigte Interrupt kennen. Über diese Nummer wird in der Interrupt-Vektor-Tabelle die Adresse des Interrupt-Unterprogrammes (ISR) referenziert und ausgeführt. Was versteht man unter internen und externen Interrupts? Externe Interrupts sind asynchron, wie nichtvektorisierte und vektorisierte Interrupts. Interne sind synchron, wie Software Interrupts oder Exection-Traps (Reaktionen auf interne Fehler wie FPU-Errors oder Page-Faults). Was ist Polling? Polling ist das zyklische Abfragen von einen oder mehreren E/A-Devices zur Feststellung der Kommunikationsbereitschaft bzw. zum Einholen von Kommunikationswünschen. Vorteile des Pollings Nachteile des Pollings Einfach zu Implementieren Hoher Programm-Overhead Kommunikationsanforderungen erfolgen synchron zum Programmablauf Die meisten Anfragen an die Geräte sind unnötig Je mehr Geräte am Bus hängen, um so mehr steigt Reaktionszeit. Priorisierung bei zeitgleichen Anfragen erfordert zusätzlichen Zeitaufwand Aufgrund der vielen Nachteile sollte besser eine asynchrone Kommunikation mit den Geräten durch die Hardware unterstützt werden (Interrupts). Das Interrupt-Prinzip Es kann auch über eine Art "hardware-gestütztes Polling" über spezielle Interrupt-Signalleitungen eine Kommunikationsanforderung festgestellt werden. Dazu muss aber die Befehlsverarbeitungschleife um eine Unterbrechungsanfrage erweitert werden. Erklären Sie den Unterschied zwischen vektorisierten und nichtvektorisierten Interrupts! Man unterscheidet vektorisierten und nichtvektorisierten Interrupt. Bei nichtvektorisierten Interrupts wird dem Interruptsignal eine feste Adresse zugeordnet. Bei vektorisierten Interrupts wird dynamisch eine wahlfreie Adresse zugeordnet, welche durch die CPU über ein definiertes Protokoll vom Datenbus gelesen wird. Was passiert beim Auftreten eines Interrupts? 1. Sperren weiterer Unterbrechungen mit gleicher oder geringerer Priotität Unterbrechungen mit höherer Wichtigkeit dürfen normalerweise solche mit geringerer Wichtigkeit wieder unterbrechen 2. Rettung wichtiger Register-Informationen(Prozessorstatus) alle Prozessor-Register retten, die durch die Interruptbehandlung überschrieben würden heute gibt es dafür spezielle Maschinenbefehle 3. Bestimmen der Interruptquelle (durch Hardware realisiert) 4. Laden des zugehörigen Interruptvektors d.h. das Herstellen des Anfangszustandes für gewählte Interruptroutine 5. Abarbeitung der Interruptroutine Retten weiterer Zustandsinformationen, sofern nicht durch Hardware realisiert meistens Übernahme weiterer Parameter von definierten Stellen (bei Systemaufruf Ruf-Nr. und weitere Parameter oder bei Geräte-Interrupt Gerätestatusbits wie E/A Fortschritt, Fehler etc.) eigentliche Behandlung des Interrupts, z.B. Setzen eines Flags (z.B. bei Gleitkommaüberlauf oder Aufruf zum Rückpositionieren und erneutem Lesen bei Lesefehler bei Magnetbandkassette (komplizierterer Fall) 6. Rückkehr zur unterbrochenen Aufgabe entweder Rückspeichern der geretteten Registerinformationen, d.h. Wiederherstellen des Prozessorzustandes oder Bearbeitung einer neuen Aufgabe, z.B. bei Uhrinterrupt nach Ablauf einer Zeitscheibe oder Zustand "HALT" nach schwerem Fehler, z.B. Spannungsausfall (abort) Welche beiden Zustandssicherungskonzepte gibt es totale Sicherung aller bislang nicht automatisch gesicherten Register der CPU-Status des unterbrochenen Programms wird komplett eingefroren auch die invarianten Anteile werden gesichert, der Programmzustand ist damit leicht zugreifbar weit verbreitet bei Allzweckbetriebssystemen (z.B. UNIX & Co.) partielle Sicherung der im weiteren Verlauf nicht gesicherten Register der CPU-Status des unterbrochenen Programms wird teilweise eingefroren es wird nur der wirklich von Änderungen betroffene Anteil gesichert der Programmzustand ist damit nicht leicht zugreifbar weit verbreitet bei Spezialzweckbetriebssystemen Was stellt das Hauptproblem bei Interrupts dar Interrupts verhalten sich nicht deterministisch. D.h. ihre Abarbeitungszeit variiert. Sie sollte trotzdem so gering wie möglich gehalten werden. Warum wird DMA oft Interrupts vorgezogen? Zwar befreien Interrupts die Prozessoren vom Warten auf E/A Ereignisse, aber vektorisierte Interrupts benötigen viele Taktzyklen zu ihrer Abarbeitung. Dieser Overhead steigt natürlich, um so weniger Datenmengen bei einer Interruptauslösung übertragen werden. Interrupts werden erst nach der Befehlsabarbeitung erkannt und ausgeführt. Dies ist ein Problem bei Echtzeitanwendungen, da sich diese Verzögerung negativ auswirken kann. Außerdem kommt es durch Interrupts bei Instruction-Set-Parallismus oft zu Pipeline-Neustarts. Die Lösung dieser Probleme wäre ein direkter Speicherzugriff eines Devices, da so der Prozessor komplett umgangen werden kann. Wie kann DMA implementiert werden? Zentral Ein zentraler DMA-Controller steht allen Geräten zu Verfügung. Dezentral: Jede E/A-Einheit hat ihren eigenen DMA-Controller implementiert und kann selbst Busmaster werden Probleme bei DMA treten vor allem durch ihre Unabhängigkeit und die dadurch notwendigen Schutzmaßnahmen auf. Ein DMA-Controller wirkt wie ein weiterer Prozessor am Bus. Um Inkonsistenzen im Speicher zu vermeiden, muss ein DMA-Controller eng mit dem Speichermanagment des Systems zusammenarbeiten. Was ist Memory-Mapped I/O? Ein I/O Controller besteht aus einer Vielzahl von Registern, welche auf zwei Varianten adressiert werden können: Memory-Mapped I/O, um den konventionellen Adr







Flashcard 7657306328332

Question
Die totale Sicherung ist bei [...] verbreitet.
Answer
Allzweckbetriebssystemen

statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Parent (intermediate) annotation

Open it
Die totale Sicherung ist bei Allzweckbetriebssystemen verbreitet.

Original toplevel document

Grundprinzipien der Rechnerarchitektur
rt das Big-Endian-Format. Falls Worte so in den Speicher passen, das keine Verschiebungen auftreten, heißt der Speicher aligned. Prüfen kann man dies durch die Formel Adresse mod Wortlänge = 0? <span>Kapitel 2 - Interrupts und DMA Klassifizieren Sie die verschiedenen Unterbrechungen! Wenn in der Literatur von Interrupts gesprochen wird, so werden oft externe, asynchrone Interrupts gemeint, welche meistens in Zusammenhang mit E/A-Geräten auftreten. Wie arbeiten Traps (Fangstellen?) Traps sind eine Art automatische Prozeduraufrufe, welche durch eine vom Programm verursachte Bedingung eingeleitet werden. Solch eine Bedingung kann z.B. Gleitkommaüberlauf, Schutzverletzung oder Stapelüberlauf. Findet ein Überlauf statt, so stoppt die Ablaufsteuerung die Ausführung und holt von einer bestimmten Stelle im Speicher die Adresse des Trap-Handlers (Prozedur), mit der dann der Programmcounter überschrieben wird. Wesentliches Merkmal eines Traps ist, daß es durch Ausnahmebedingungen ausgelöst wird, welche durch Hardware oder Mikroprogramme erkannt werden. Wie arbeiten Interrupts Interrupts sind Unterbrechungen der Ablaufsteuerung. Wie es für Traps Trap-Handler gibt, gibt es für Interrupts Interrupt-Handler. Nach Abarbeitung des Interrupt-Handlers wird die Kontrolle wieder an das Programm zurückgegeben. Der interne Zustand des Prozessors (IP, Register, ...) muss nun exakt wiederhergestellt werden. Der Unterschied zwischen Traps und Interrupts ist nun, daß Traps synchron mit dem ausgeführten Programm laufen. Deshalb werden sie auch erst nach der Befehlsausführung erkannt und ausgeführt. Asynchrone Interrupts sind dagegen unabhängig vom gerade ausgeführten Programm. Interrupt’s stammen von echten physikalischen INT-Quellen wie z.B. IRQ3 von COM1 kommt. Diese springen über ein Interrupt-Gate. Interrupt’s die per Software mit INT-Befehl ausgelöst werden, springen über Trap-Gates! Wenn ein Interrupt ein Interrupt-Gate durchläuft, wird das IF=0 automatisch gesetzt, d.h. es gehen überhaupt keine Interrupts mehr durch. Asynchrone Interrupts können also nicht unterbrochen werden. Trap-Gates dürfen unterbrochen werden, da sie nicht zeitkritisch sind. Interrupt- und Trap-Gates führen nicht zu Taskwechsel über ein TSS. Das retten der Register ist dem INT-Handler überlassen. Was sind Software Interrupts? Software-Interrupts werden von Programmen mit Hilfe von speziellen Maschinenbefehlen aufgerufen. Dabei müssen diese nur eine Nummer für das benötigte Interrupt kennen. Über diese Nummer wird in der Interrupt-Vektor-Tabelle die Adresse des Interrupt-Unterprogrammes (ISR) referenziert und ausgeführt. Was versteht man unter internen und externen Interrupts? Externe Interrupts sind asynchron, wie nichtvektorisierte und vektorisierte Interrupts. Interne sind synchron, wie Software Interrupts oder Exection-Traps (Reaktionen auf interne Fehler wie FPU-Errors oder Page-Faults). Was ist Polling? Polling ist das zyklische Abfragen von einen oder mehreren E/A-Devices zur Feststellung der Kommunikationsbereitschaft bzw. zum Einholen von Kommunikationswünschen. Vorteile des Pollings Nachteile des Pollings Einfach zu Implementieren Hoher Programm-Overhead Kommunikationsanforderungen erfolgen synchron zum Programmablauf Die meisten Anfragen an die Geräte sind unnötig Je mehr Geräte am Bus hängen, um so mehr steigt Reaktionszeit. Priorisierung bei zeitgleichen Anfragen erfordert zusätzlichen Zeitaufwand Aufgrund der vielen Nachteile sollte besser eine asynchrone Kommunikation mit den Geräten durch die Hardware unterstützt werden (Interrupts). Das Interrupt-Prinzip Es kann auch über eine Art "hardware-gestütztes Polling" über spezielle Interrupt-Signalleitungen eine Kommunikationsanforderung festgestellt werden. Dazu muss aber die Befehlsverarbeitungschleife um eine Unterbrechungsanfrage erweitert werden. Erklären Sie den Unterschied zwischen vektorisierten und nichtvektorisierten Interrupts! Man unterscheidet vektorisierten und nichtvektorisierten Interrupt. Bei nichtvektorisierten Interrupts wird dem Interruptsignal eine feste Adresse zugeordnet. Bei vektorisierten Interrupts wird dynamisch eine wahlfreie Adresse zugeordnet, welche durch die CPU über ein definiertes Protokoll vom Datenbus gelesen wird. Was passiert beim Auftreten eines Interrupts? 1. Sperren weiterer Unterbrechungen mit gleicher oder geringerer Priotität Unterbrechungen mit höherer Wichtigkeit dürfen normalerweise solche mit geringerer Wichtigkeit wieder unterbrechen 2. Rettung wichtiger Register-Informationen(Prozessorstatus) alle Prozessor-Register retten, die durch die Interruptbehandlung überschrieben würden heute gibt es dafür spezielle Maschinenbefehle 3. Bestimmen der Interruptquelle (durch Hardware realisiert) 4. Laden des zugehörigen Interruptvektors d.h. das Herstellen des Anfangszustandes für gewählte Interruptroutine 5. Abarbeitung der Interruptroutine Retten weiterer Zustandsinformationen, sofern nicht durch Hardware realisiert meistens Übernahme weiterer Parameter von definierten Stellen (bei Systemaufruf Ruf-Nr. und weitere Parameter oder bei Geräte-Interrupt Gerätestatusbits wie E/A Fortschritt, Fehler etc.) eigentliche Behandlung des Interrupts, z.B. Setzen eines Flags (z.B. bei Gleitkommaüberlauf oder Aufruf zum Rückpositionieren und erneutem Lesen bei Lesefehler bei Magnetbandkassette (komplizierterer Fall) 6. Rückkehr zur unterbrochenen Aufgabe entweder Rückspeichern der geretteten Registerinformationen, d.h. Wiederherstellen des Prozessorzustandes oder Bearbeitung einer neuen Aufgabe, z.B. bei Uhrinterrupt nach Ablauf einer Zeitscheibe oder Zustand "HALT" nach schwerem Fehler, z.B. Spannungsausfall (abort) Welche beiden Zustandssicherungskonzepte gibt es totale Sicherung aller bislang nicht automatisch gesicherten Register der CPU-Status des unterbrochenen Programms wird komplett eingefroren auch die invarianten Anteile werden gesichert, der Programmzustand ist damit leicht zugreifbar weit verbreitet bei Allzweckbetriebssystemen (z.B. UNIX & Co.) partielle Sicherung der im weiteren Verlauf nicht gesicherten Register der CPU-Status des unterbrochenen Programms wird teilweise eingefroren es wird nur der wirklich von Änderungen betroffene Anteil gesichert der Programmzustand ist damit nicht leicht zugreifbar weit verbreitet bei Spezialzweckbetriebssystemen Was stellt das Hauptproblem bei Interrupts dar Interrupts verhalten sich nicht deterministisch. D.h. ihre Abarbeitungszeit variiert. Sie sollte trotzdem so gering wie möglich gehalten werden. Warum wird DMA oft Interrupts vorgezogen? Zwar befreien Interrupts die Prozessoren vom Warten auf E/A Ereignisse, aber vektorisierte Interrupts benötigen viele Taktzyklen zu ihrer Abarbeitung. Dieser Overhead steigt natürlich, um so weniger Datenmengen bei einer Interruptauslösung übertragen werden. Interrupts werden erst nach der Befehlsabarbeitung erkannt und ausgeführt. Dies ist ein Problem bei Echtzeitanwendungen, da sich diese Verzögerung negativ auswirken kann. Außerdem kommt es durch Interrupts bei Instruction-Set-Parallismus oft zu Pipeline-Neustarts. Die Lösung dieser Probleme wäre ein direkter Speicherzugriff eines Devices, da so der Prozessor komplett umgangen werden kann. Wie kann DMA implementiert werden? Zentral Ein zentraler DMA-Controller steht allen Geräten zu Verfügung. Dezentral: Jede E/A-Einheit hat ihren eigenen DMA-Controller implementiert und kann selbst Busmaster werden Probleme bei DMA treten vor allem durch ihre Unabhängigkeit und die dadurch notwendigen Schutzmaßnahmen auf. Ein DMA-Controller wirkt wie ein weiterer Prozessor am Bus. Um Inkonsistenzen im Speicher zu vermeiden, muss ein DMA-Controller eng mit dem Speichermanagment des Systems zusammenarbeiten. Was ist Memory-Mapped I/O? Ein I/O Controller besteht aus einer Vielzahl von Registern, welche auf zwei Varianten adressiert werden können: Memory-Mapped I/O, um den konventionellen Adr







Flashcard 7657308163340

Question
[...] Adressen bestehen aus Segment und Offset.
Answer
Segmentierte

statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Parent (intermediate) annotation

Open it
Segmentierte Adressen bestehen aus Segment und Offset.

Original toplevel document

Grundprinzipien der Rechnerarchitektur
s den Index Stapeladressierung Hier ist gar keine Adressangabe notwendig Somit sind die Instruktionen sehr kurz Die Stapeladressierung arbeitet mit der umgekehrten polnischen Notation (Postfix) <span>Kapitel 3 - Speicherschutz und Multitasking Um unberechtigte Zugriffe, Datenaufrufe oder Systemprozedurecalls zu vermeiden und Task-Isolation zu gewährleisten, ist ein ausgeklügeltes Speicherschutzsystem notwendig. Segmente zum schützen von Speicherbereichen Segmente sind logische Speicherbereiche variabler Länge (Pages sind normalerweise gleich groß und ergeben zusammengesetzt ein Segment). In einem Segment ist wiederum eine Aufteilung in Code-, Daten- und Speichersegment zu finden. Jedes Segment definiert ein Objekt, welches eindeutig über einen Deskriptor mit Basisadresse, Zugriffsrechten und Limit beschieben wird. Auf Basis dieser Segmente arbeitet die komplette Speicherverwaltung eines Rechners. Wie wird auf Segmente zugegriffen? Segmente werden über eine Deskriptortabelle indiziert. Die Tabellen enthalten Pointer auf die Speicherbereiche der jeweiligen Segmente. Was ist das besondere am segmentierten Adreßraum? Adressen auf Basis von Segmenten sind im unterschied zu linearen Adressen zweidimensional. Sie bestehen aus Segment und Offset. Berechnet werden sie durch einfache Addition von Segment und Offset. Vor der Addition ist das Segment um 4 Stellen nach links zu verschieben. 0002 : 000F berechnet sich also aus 0020 + 000F = 0001F Was sind die Nachteile des Realmodes? Begrenzung eines Segments auf maximal 64 KB, da Offsetadresse nur 16 Bit groß ist Es nur das erste MByte durch das Betriebssystem adressierbar kein Schutz des Speichers vor anderen Programmen Einträge aus der Interruptvektor-Tabelle sind leicht veränderbar nur ein Programm kann ausgeführt werden Was hat Multitasking mit Protected Mode zu tun? Multitasking kann nur durch Protected Mode arbeiten. Er ist sozusagen Grundlage für alle multitaskingfähigen Betriebssysteme. nsbesondere geht es um gegenseitigen Schutz der laufenden Tasks Taskwechselunterstützung durch das Betriebssystem Privilegierungsmechanismen Betriebssystemfunktionen zur Verwaltung von virtuellen Speicher Getrennte Stacks für Parameterübergabe Lösung des "Trojanischen Pferd" Problems Privilegebenen Im Protected Mode werden Anwendungen und Betriebssystem strikt getrennt. Es gibt vier Privilegstufen (null bis drei), welche über die Ausführung verschiedener Maschinensprachebefehle entscheiden. Befehle der Ebene Null sind z.B. das Laden der globalen Deskriptorentabelle oder des Maschinenstatuswortes. Aus welchen beiden Teilen besteht eine Virtuelle Adresse? Eine virtuelle Adresse beinhaltet den Segmentselektor, welcher auf einen Eintrag in der Deskriptortabelle zeigt. Das Segment-Offset zeigt auf die dazugehörige Adresse in dem selektierten Segment. Aus welchen drei Teilen setzt sich ein Segmentselektor zusammen? Aus dem Index, der den Eintrag in der Deskriptortabelle referenziert, dem Table Indicator, welcher über globalem oder lokalem Adressraum entscheidet und den Privelege Level. TI - Table Indicator 0 = GDT (Global Deskriptor Table für den globalen Adreßraum) 1 = LDT (Local Deskriptor Table für den lokalen Adreßraum) RPL Requestor's Privilege Level Privilegstufe des Segments, auf welches der Selektor verweist Was ist ein Deskriptor? Deskriptoren sind Abbildungen zwischen der virtuellen bzw. logischen Adresse (Segmentselektor:Offset) und der linearen Adresse (Basisadresse und Offset). Aus der linearen Adresse wird dann die physikalische Adresse berechnet. (bei i286 war die lineare Adresse noch gleich der physikalischen Adresse, da es noch keine Paging-Einheit gab) Was steht alles in so einem Eintrag in der Deskriptortabelle? Die "normalen" Deskriptoren, welche einen normalen Adressraum (Daten-, Code- oder Stacksegment) beschreiben, enthalten die Basisadresse des Segmentes im Speicher die Zugriffsrechte die Länge des Segmentes Eine andere Klasse von Deskriptoren sind System-Segment-Deskriptoren und zur Ablaufsteuerung notwendige Deskriptoren. Erstere definieren Einsprungpunkte in spezielle System-Unterroutinen oder Gates. Letztere sind Deskriptoren für Task-State-Segmente oder Local-Deskriptor-Tables. Aktiv sind aber immer nur eine globale, eine lokale Interrupt-Beschreibertabelle und eine Interrupt-Beschreibertabelle. Was ist ein Gate? Gates sind spezielle Eintritts-Deskriptoren in Segmente höherer Privilegstufe. (Interrupt- oder Trap-Gate-Deskriptoren) Worin unterscheiden sich GDT und LDT? Die Global Descriptor Table einhält Segmente des globalen Adressraums, welcher für alle Tasks zur Verfügung steht. Dagegen sind mit Local Descriptor Table allokierte Segmente nur von den Host-Tasks selbst adressierbar. (privater Adressraum) Lokale Deskriptortabellen sind Grundlage für die Task-Isolation und daher extrem wichtig für Sicherheit und Segmentschutz. Beschreiben Sie den Aufbau einer Globalen Deskriptortabelle ... ... Globale C/D2 Globale Code-/Daten-Deskriptoren Globale C/D1 Globale Code-/Daten-Deskriptoren ... ... System D2 Gates bzw. TSS-Deskriptoren System D1 Gates bzw. TSS-Deskriptoren ... ... ... ... LDT 2 Lokale Deskriptoren für individuellen Task LDT 1 Lokale Deskriptoren für individuellen Task ... ... ... ... IDT 2 Interrupt/Exeption Gates bzw. Deskriptoren IDT 1 Interrupt/Exeption Gates bzw. Deskriptoren GTD_alias ermöglicht dynamischen Zugriff auf die GDT 0-Selektor Zugriff auf 0-Selektor führt zu Exeption Was unterscheidet Real-Mode und Protected-Mode? Im Real-Mode gibt es keine Deskriptoren und somit ist auch kein Segmentschutz möglich. Die Basisadresse berechnet sich einfach aus dem Segment-Register, welches maximal 1 MByte adressieren kann, da es nur 20 Bit breit ist. Im Protected-Mode werden die Basisadressen mittels Deskriptoren bestimmt. Auf Grund dieser Unterschiede sind folgende Merkmale für den Protected-Mode signifikant: Virtuelle Speicherverwaltung Speicherschutzmechanismen durch Segmentation (über Deskriptoren) Paging möglich echtes Multitasking möglich I/O-Privilegierung und privilegierte Befehle Was ist Paging und wie funktioniert es? Paging wird ab i386 vom Prozessor unterstützt und ist nichts weiter als eine Einteilung des Speichers in gleich große Seiten. Vorteil des virtuellen Speichers, welcher durch Mapping oder Paging erst möglich ist, sind für Anwendungen theoretisch unendlich großen Arbeitsspeicher. Grund dafür ist, dass der Tertiärspeicher als Zwischenspeicher für schlafende oder temporär nicht notwendige Seiten ausgenutzt wird. Es gibt ausgeklügelte Seitenerstetzungsalgorithmen, welche das Austauschen von Seiten übernehmen. Ein weiteres Problem was beim Paging gelöst werden muss, ist die eventuell entstehende Inkonsistenz. D ieses Problem wird wie bekanntermaßen üblich durch Dirty-Bits in den Pages gelöst. Verwirrend ist anfangs der Zusammenhang von Segmentierung und Paging. Letztendlich laufen beide Technologien gleichzeitig auf einem modernen System und ergänzen sich gegenseitig. Paging ist hinter den Segmentierungsvorgang geschalten, um Transparenz zu gewährleisten. Die durch die Segmentierung berechnete bzw. übergebene lineare Adresse entspricht ohne Paging der physikalischen. Falls Paging aktiv ist, muss noch etwas mehr getan werden. Die Umsetzung von Linearer in Physikalischer Adresse hängt vom verwendeten Paging ab. Normalerweise wird über die ersten Bits die Page-Table referenziert und über die folgenden der Pagetable-Eintrag, aus dem die Basisadresse geholt wird. Der Offset wird normalerweise beibehalten. Beschreiben Sie was bei einem Page-Fault intern alles abläuft? Während Abarbeitung einer Befehlssequenz erfolgen mehrere Seitenzugriffe Es erfolgt ein Zugriff auf eine Seite. Prozessor prüft die Seite (ist sie im Speicher?). Seite gibt Page Not Present State zurück (d.h. Seite nicht im Speicher) CPU löst Page Fault Exception aus (Siehe System-Aufruf-Deskriptoren) Betriebssystem gibt in Auftrag die Seite von Platte zu holen Prozessor aktiviert Festplattenhardware und positioniert Leseköpfe Seite wird über DMA-Transfer von Disk-To-free Memory übertragen Betriebssystem aktualisiert Pagetable einschließlich des TLB (flush TLB) Betriebssystem startet den unterbrochenen Befehl neu Nennen Sie Vorteile und Nachteile des Pagings gegenüber Segmentation-Only! Performanceerhöhung eines Multitasking-Betriebssystems Verwaltung der Swap-Datei wird durch die Verwendung konstanter Speicherblöcke einfacher nur die 4-KByte werden eingelagert, die tatsächlich benötigt werden und nicht das gesamte Segment Nachteile: Ausführung verzögert sich, weil die Adresse erst dekodiert werden muß bei Zugriff auf eine Seite/Page evtl. erst Einlagerung dieser vom Sekundärspeicher notwendig (Present-Bit) Wie kann man die Adressdekodierung beim Paging umgehen? Durch Translation Lookaside Buffer. Ein TLB ist ein assoziativer Vierwege-Cache, welcher die 32 Page-Table-Einträge aufnimmt, auf die der Prozessor zuletzt zugegriffen hat (LRU-Strategie). Ein TLB Eintrag besteht aus drei logischen Blöcken: Datenblock mit Page-Attributen und physikalische Basisadresse einer Page Tagblock enthält die oberen 17 Bit einer linearen Adresse und Schutz-Bits LRU-Block (Least Recently Used) zeigt letzten Zugriff an Page- und Segmentschutz Zuerst wirkt der Segmentschutz und danach Pageschutz. Pageschutz ist nur 2-stufig. Die inneren drei Privilegebenen sind beim Paging als Supervisor-Code geschützt. Die äußere Ebene ist User-Code. Ein Zugriffsversuch einer User-Page auf eine Supervisor-Page löst eine Exception aus. Was unterscheidet kooperatives und preemtives Multitasking? Beim kooperativen Multitasking entscheiden die Tasks selbst über die Umschaltung der Prozessorleistung. (Naives und Gutgläubiges Verfahren, daß an die Vernunft aller Tasks und somit aller Programmierer glaubt : ) Preemptives Multitasking ist echtes Multitasking. Ein externer Timer steuert die Umschaltung der Tasks. Die Tasks können somit keinen Einfluss auf die Betriebsmittelumschaltung nehmen. Kapitel 4 - Speicherhierarchie und Caches Was bedeutet die Eigenschaft Lokalität? Aus programmtechnischer Sicht wiederholen sich oft Befehle und ganze Programmteile. Somit werden Daten







Flashcard 7657309736204

Question
Segmentierte Adressen bestehen aus [...] und Offset.
Answer
Segment

statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Parent (intermediate) annotation

Open it
Segmentierte Adressen bestehen aus Segment und Offset.

Original toplevel document

Grundprinzipien der Rechnerarchitektur
s den Index Stapeladressierung Hier ist gar keine Adressangabe notwendig Somit sind die Instruktionen sehr kurz Die Stapeladressierung arbeitet mit der umgekehrten polnischen Notation (Postfix) <span>Kapitel 3 - Speicherschutz und Multitasking Um unberechtigte Zugriffe, Datenaufrufe oder Systemprozedurecalls zu vermeiden und Task-Isolation zu gewährleisten, ist ein ausgeklügeltes Speicherschutzsystem notwendig. Segmente zum schützen von Speicherbereichen Segmente sind logische Speicherbereiche variabler Länge (Pages sind normalerweise gleich groß und ergeben zusammengesetzt ein Segment). In einem Segment ist wiederum eine Aufteilung in Code-, Daten- und Speichersegment zu finden. Jedes Segment definiert ein Objekt, welches eindeutig über einen Deskriptor mit Basisadresse, Zugriffsrechten und Limit beschieben wird. Auf Basis dieser Segmente arbeitet die komplette Speicherverwaltung eines Rechners. Wie wird auf Segmente zugegriffen? Segmente werden über eine Deskriptortabelle indiziert. Die Tabellen enthalten Pointer auf die Speicherbereiche der jeweiligen Segmente. Was ist das besondere am segmentierten Adreßraum? Adressen auf Basis von Segmenten sind im unterschied zu linearen Adressen zweidimensional. Sie bestehen aus Segment und Offset. Berechnet werden sie durch einfache Addition von Segment und Offset. Vor der Addition ist das Segment um 4 Stellen nach links zu verschieben. 0002 : 000F berechnet sich also aus 0020 + 000F = 0001F Was sind die Nachteile des Realmodes? Begrenzung eines Segments auf maximal 64 KB, da Offsetadresse nur 16 Bit groß ist Es nur das erste MByte durch das Betriebssystem adressierbar kein Schutz des Speichers vor anderen Programmen Einträge aus der Interruptvektor-Tabelle sind leicht veränderbar nur ein Programm kann ausgeführt werden Was hat Multitasking mit Protected Mode zu tun? Multitasking kann nur durch Protected Mode arbeiten. Er ist sozusagen Grundlage für alle multitaskingfähigen Betriebssysteme. nsbesondere geht es um gegenseitigen Schutz der laufenden Tasks Taskwechselunterstützung durch das Betriebssystem Privilegierungsmechanismen Betriebssystemfunktionen zur Verwaltung von virtuellen Speicher Getrennte Stacks für Parameterübergabe Lösung des "Trojanischen Pferd" Problems Privilegebenen Im Protected Mode werden Anwendungen und Betriebssystem strikt getrennt. Es gibt vier Privilegstufen (null bis drei), welche über die Ausführung verschiedener Maschinensprachebefehle entscheiden. Befehle der Ebene Null sind z.B. das Laden der globalen Deskriptorentabelle oder des Maschinenstatuswortes. Aus welchen beiden Teilen besteht eine Virtuelle Adresse? Eine virtuelle Adresse beinhaltet den Segmentselektor, welcher auf einen Eintrag in der Deskriptortabelle zeigt. Das Segment-Offset zeigt auf die dazugehörige Adresse in dem selektierten Segment. Aus welchen drei Teilen setzt sich ein Segmentselektor zusammen? Aus dem Index, der den Eintrag in der Deskriptortabelle referenziert, dem Table Indicator, welcher über globalem oder lokalem Adressraum entscheidet und den Privelege Level. TI - Table Indicator 0 = GDT (Global Deskriptor Table für den globalen Adreßraum) 1 = LDT (Local Deskriptor Table für den lokalen Adreßraum) RPL Requestor's Privilege Level Privilegstufe des Segments, auf welches der Selektor verweist Was ist ein Deskriptor? Deskriptoren sind Abbildungen zwischen der virtuellen bzw. logischen Adresse (Segmentselektor:Offset) und der linearen Adresse (Basisadresse und Offset). Aus der linearen Adresse wird dann die physikalische Adresse berechnet. (bei i286 war die lineare Adresse noch gleich der physikalischen Adresse, da es noch keine Paging-Einheit gab) Was steht alles in so einem Eintrag in der Deskriptortabelle? Die "normalen" Deskriptoren, welche einen normalen Adressraum (Daten-, Code- oder Stacksegment) beschreiben, enthalten die Basisadresse des Segmentes im Speicher die Zugriffsrechte die Länge des Segmentes Eine andere Klasse von Deskriptoren sind System-Segment-Deskriptoren und zur Ablaufsteuerung notwendige Deskriptoren. Erstere definieren Einsprungpunkte in spezielle System-Unterroutinen oder Gates. Letztere sind Deskriptoren für Task-State-Segmente oder Local-Deskriptor-Tables. Aktiv sind aber immer nur eine globale, eine lokale Interrupt-Beschreibertabelle und eine Interrupt-Beschreibertabelle. Was ist ein Gate? Gates sind spezielle Eintritts-Deskriptoren in Segmente höherer Privilegstufe. (Interrupt- oder Trap-Gate-Deskriptoren) Worin unterscheiden sich GDT und LDT? Die Global Descriptor Table einhält Segmente des globalen Adressraums, welcher für alle Tasks zur Verfügung steht. Dagegen sind mit Local Descriptor Table allokierte Segmente nur von den Host-Tasks selbst adressierbar. (privater Adressraum) Lokale Deskriptortabellen sind Grundlage für die Task-Isolation und daher extrem wichtig für Sicherheit und Segmentschutz. Beschreiben Sie den Aufbau einer Globalen Deskriptortabelle ... ... Globale C/D2 Globale Code-/Daten-Deskriptoren Globale C/D1 Globale Code-/Daten-Deskriptoren ... ... System D2 Gates bzw. TSS-Deskriptoren System D1 Gates bzw. TSS-Deskriptoren ... ... ... ... LDT 2 Lokale Deskriptoren für individuellen Task LDT 1 Lokale Deskriptoren für individuellen Task ... ... ... ... IDT 2 Interrupt/Exeption Gates bzw. Deskriptoren IDT 1 Interrupt/Exeption Gates bzw. Deskriptoren GTD_alias ermöglicht dynamischen Zugriff auf die GDT 0-Selektor Zugriff auf 0-Selektor führt zu Exeption Was unterscheidet Real-Mode und Protected-Mode? Im Real-Mode gibt es keine Deskriptoren und somit ist auch kein Segmentschutz möglich. Die Basisadresse berechnet sich einfach aus dem Segment-Register, welches maximal 1 MByte adressieren kann, da es nur 20 Bit breit ist. Im Protected-Mode werden die Basisadressen mittels Deskriptoren bestimmt. Auf Grund dieser Unterschiede sind folgende Merkmale für den Protected-Mode signifikant: Virtuelle Speicherverwaltung Speicherschutzmechanismen durch Segmentation (über Deskriptoren) Paging möglich echtes Multitasking möglich I/O-Privilegierung und privilegierte Befehle Was ist Paging und wie funktioniert es? Paging wird ab i386 vom Prozessor unterstützt und ist nichts weiter als eine Einteilung des Speichers in gleich große Seiten. Vorteil des virtuellen Speichers, welcher durch Mapping oder Paging erst möglich ist, sind für Anwendungen theoretisch unendlich großen Arbeitsspeicher. Grund dafür ist, dass der Tertiärspeicher als Zwischenspeicher für schlafende oder temporär nicht notwendige Seiten ausgenutzt wird. Es gibt ausgeklügelte Seitenerstetzungsalgorithmen, welche das Austauschen von Seiten übernehmen. Ein weiteres Problem was beim Paging gelöst werden muss, ist die eventuell entstehende Inkonsistenz. D ieses Problem wird wie bekanntermaßen üblich durch Dirty-Bits in den Pages gelöst. Verwirrend ist anfangs der Zusammenhang von Segmentierung und Paging. Letztendlich laufen beide Technologien gleichzeitig auf einem modernen System und ergänzen sich gegenseitig. Paging ist hinter den Segmentierungsvorgang geschalten, um Transparenz zu gewährleisten. Die durch die Segmentierung berechnete bzw. übergebene lineare Adresse entspricht ohne Paging der physikalischen. Falls Paging aktiv ist, muss noch etwas mehr getan werden. Die Umsetzung von Linearer in Physikalischer Adresse hängt vom verwendeten Paging ab. Normalerweise wird über die ersten Bits die Page-Table referenziert und über die folgenden der Pagetable-Eintrag, aus dem die Basisadresse geholt wird. Der Offset wird normalerweise beibehalten. Beschreiben Sie was bei einem Page-Fault intern alles abläuft? Während Abarbeitung einer Befehlssequenz erfolgen mehrere Seitenzugriffe Es erfolgt ein Zugriff auf eine Seite. Prozessor prüft die Seite (ist sie im Speicher?). Seite gibt Page Not Present State zurück (d.h. Seite nicht im Speicher) CPU löst Page Fault Exception aus (Siehe System-Aufruf-Deskriptoren) Betriebssystem gibt in Auftrag die Seite von Platte zu holen Prozessor aktiviert Festplattenhardware und positioniert Leseköpfe Seite wird über DMA-Transfer von Disk-To-free Memory übertragen Betriebssystem aktualisiert Pagetable einschließlich des TLB (flush TLB) Betriebssystem startet den unterbrochenen Befehl neu Nennen Sie Vorteile und Nachteile des Pagings gegenüber Segmentation-Only! Performanceerhöhung eines Multitasking-Betriebssystems Verwaltung der Swap-Datei wird durch die Verwendung konstanter Speicherblöcke einfacher nur die 4-KByte werden eingelagert, die tatsächlich benötigt werden und nicht das gesamte Segment Nachteile: Ausführung verzögert sich, weil die Adresse erst dekodiert werden muß bei Zugriff auf eine Seite/Page evtl. erst Einlagerung dieser vom Sekundärspeicher notwendig (Present-Bit) Wie kann man die Adressdekodierung beim Paging umgehen? Durch Translation Lookaside Buffer. Ein TLB ist ein assoziativer Vierwege-Cache, welcher die 32 Page-Table-Einträge aufnimmt, auf die der Prozessor zuletzt zugegriffen hat (LRU-Strategie). Ein TLB Eintrag besteht aus drei logischen Blöcken: Datenblock mit Page-Attributen und physikalische Basisadresse einer Page Tagblock enthält die oberen 17 Bit einer linearen Adresse und Schutz-Bits LRU-Block (Least Recently Used) zeigt letzten Zugriff an Page- und Segmentschutz Zuerst wirkt der Segmentschutz und danach Pageschutz. Pageschutz ist nur 2-stufig. Die inneren drei Privilegebenen sind beim Paging als Supervisor-Code geschützt. Die äußere Ebene ist User-Code. Ein Zugriffsversuch einer User-Page auf eine Supervisor-Page löst eine Exception aus. Was unterscheidet kooperatives und preemtives Multitasking? Beim kooperativen Multitasking entscheiden die Tasks selbst über die Umschaltung der Prozessorleistung. (Naives und Gutgläubiges Verfahren, daß an die Vernunft aller Tasks und somit aller Programmierer glaubt : ) Preemptives Multitasking ist echtes Multitasking. Ein externer Timer steuert die Umschaltung der Tasks. Die Tasks können somit keinen Einfluss auf die Betriebsmittelumschaltung nehmen. Kapitel 4 - Speicherhierarchie und Caches Was bedeutet die Eigenschaft Lokalität? Aus programmtechnischer Sicht wiederholen sich oft Befehle und ganze Programmteile. Somit werden Daten







Flashcard 7657311309068

Question
Segmentierte Adressen bestehen aus Segment und [...].
Answer
Offset

statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Parent (intermediate) annotation

Open it
Segmentierte Adressen bestehen aus Segment und Offset.

Original toplevel document

Grundprinzipien der Rechnerarchitektur
s den Index Stapeladressierung Hier ist gar keine Adressangabe notwendig Somit sind die Instruktionen sehr kurz Die Stapeladressierung arbeitet mit der umgekehrten polnischen Notation (Postfix) <span>Kapitel 3 - Speicherschutz und Multitasking Um unberechtigte Zugriffe, Datenaufrufe oder Systemprozedurecalls zu vermeiden und Task-Isolation zu gewährleisten, ist ein ausgeklügeltes Speicherschutzsystem notwendig. Segmente zum schützen von Speicherbereichen Segmente sind logische Speicherbereiche variabler Länge (Pages sind normalerweise gleich groß und ergeben zusammengesetzt ein Segment). In einem Segment ist wiederum eine Aufteilung in Code-, Daten- und Speichersegment zu finden. Jedes Segment definiert ein Objekt, welches eindeutig über einen Deskriptor mit Basisadresse, Zugriffsrechten und Limit beschieben wird. Auf Basis dieser Segmente arbeitet die komplette Speicherverwaltung eines Rechners. Wie wird auf Segmente zugegriffen? Segmente werden über eine Deskriptortabelle indiziert. Die Tabellen enthalten Pointer auf die Speicherbereiche der jeweiligen Segmente. Was ist das besondere am segmentierten Adreßraum? Adressen auf Basis von Segmenten sind im unterschied zu linearen Adressen zweidimensional. Sie bestehen aus Segment und Offset. Berechnet werden sie durch einfache Addition von Segment und Offset. Vor der Addition ist das Segment um 4 Stellen nach links zu verschieben. 0002 : 000F berechnet sich also aus 0020 + 000F = 0001F Was sind die Nachteile des Realmodes? Begrenzung eines Segments auf maximal 64 KB, da Offsetadresse nur 16 Bit groß ist Es nur das erste MByte durch das Betriebssystem adressierbar kein Schutz des Speichers vor anderen Programmen Einträge aus der Interruptvektor-Tabelle sind leicht veränderbar nur ein Programm kann ausgeführt werden Was hat Multitasking mit Protected Mode zu tun? Multitasking kann nur durch Protected Mode arbeiten. Er ist sozusagen Grundlage für alle multitaskingfähigen Betriebssysteme. nsbesondere geht es um gegenseitigen Schutz der laufenden Tasks Taskwechselunterstützung durch das Betriebssystem Privilegierungsmechanismen Betriebssystemfunktionen zur Verwaltung von virtuellen Speicher Getrennte Stacks für Parameterübergabe Lösung des "Trojanischen Pferd" Problems Privilegebenen Im Protected Mode werden Anwendungen und Betriebssystem strikt getrennt. Es gibt vier Privilegstufen (null bis drei), welche über die Ausführung verschiedener Maschinensprachebefehle entscheiden. Befehle der Ebene Null sind z.B. das Laden der globalen Deskriptorentabelle oder des Maschinenstatuswortes. Aus welchen beiden Teilen besteht eine Virtuelle Adresse? Eine virtuelle Adresse beinhaltet den Segmentselektor, welcher auf einen Eintrag in der Deskriptortabelle zeigt. Das Segment-Offset zeigt auf die dazugehörige Adresse in dem selektierten Segment. Aus welchen drei Teilen setzt sich ein Segmentselektor zusammen? Aus dem Index, der den Eintrag in der Deskriptortabelle referenziert, dem Table Indicator, welcher über globalem oder lokalem Adressraum entscheidet und den Privelege Level. TI - Table Indicator 0 = GDT (Global Deskriptor Table für den globalen Adreßraum) 1 = LDT (Local Deskriptor Table für den lokalen Adreßraum) RPL Requestor's Privilege Level Privilegstufe des Segments, auf welches der Selektor verweist Was ist ein Deskriptor? Deskriptoren sind Abbildungen zwischen der virtuellen bzw. logischen Adresse (Segmentselektor:Offset) und der linearen Adresse (Basisadresse und Offset). Aus der linearen Adresse wird dann die physikalische Adresse berechnet. (bei i286 war die lineare Adresse noch gleich der physikalischen Adresse, da es noch keine Paging-Einheit gab) Was steht alles in so einem Eintrag in der Deskriptortabelle? Die "normalen" Deskriptoren, welche einen normalen Adressraum (Daten-, Code- oder Stacksegment) beschreiben, enthalten die Basisadresse des Segmentes im Speicher die Zugriffsrechte die Länge des Segmentes Eine andere Klasse von Deskriptoren sind System-Segment-Deskriptoren und zur Ablaufsteuerung notwendige Deskriptoren. Erstere definieren Einsprungpunkte in spezielle System-Unterroutinen oder Gates. Letztere sind Deskriptoren für Task-State-Segmente oder Local-Deskriptor-Tables. Aktiv sind aber immer nur eine globale, eine lokale Interrupt-Beschreibertabelle und eine Interrupt-Beschreibertabelle. Was ist ein Gate? Gates sind spezielle Eintritts-Deskriptoren in Segmente höherer Privilegstufe. (Interrupt- oder Trap-Gate-Deskriptoren) Worin unterscheiden sich GDT und LDT? Die Global Descriptor Table einhält Segmente des globalen Adressraums, welcher für alle Tasks zur Verfügung steht. Dagegen sind mit Local Descriptor Table allokierte Segmente nur von den Host-Tasks selbst adressierbar. (privater Adressraum) Lokale Deskriptortabellen sind Grundlage für die Task-Isolation und daher extrem wichtig für Sicherheit und Segmentschutz. Beschreiben Sie den Aufbau einer Globalen Deskriptortabelle ... ... Globale C/D2 Globale Code-/Daten-Deskriptoren Globale C/D1 Globale Code-/Daten-Deskriptoren ... ... System D2 Gates bzw. TSS-Deskriptoren System D1 Gates bzw. TSS-Deskriptoren ... ... ... ... LDT 2 Lokale Deskriptoren für individuellen Task LDT 1 Lokale Deskriptoren für individuellen Task ... ... ... ... IDT 2 Interrupt/Exeption Gates bzw. Deskriptoren IDT 1 Interrupt/Exeption Gates bzw. Deskriptoren GTD_alias ermöglicht dynamischen Zugriff auf die GDT 0-Selektor Zugriff auf 0-Selektor führt zu Exeption Was unterscheidet Real-Mode und Protected-Mode? Im Real-Mode gibt es keine Deskriptoren und somit ist auch kein Segmentschutz möglich. Die Basisadresse berechnet sich einfach aus dem Segment-Register, welches maximal 1 MByte adressieren kann, da es nur 20 Bit breit ist. Im Protected-Mode werden die Basisadressen mittels Deskriptoren bestimmt. Auf Grund dieser Unterschiede sind folgende Merkmale für den Protected-Mode signifikant: Virtuelle Speicherverwaltung Speicherschutzmechanismen durch Segmentation (über Deskriptoren) Paging möglich echtes Multitasking möglich I/O-Privilegierung und privilegierte Befehle Was ist Paging und wie funktioniert es? Paging wird ab i386 vom Prozessor unterstützt und ist nichts weiter als eine Einteilung des Speichers in gleich große Seiten. Vorteil des virtuellen Speichers, welcher durch Mapping oder Paging erst möglich ist, sind für Anwendungen theoretisch unendlich großen Arbeitsspeicher. Grund dafür ist, dass der Tertiärspeicher als Zwischenspeicher für schlafende oder temporär nicht notwendige Seiten ausgenutzt wird. Es gibt ausgeklügelte Seitenerstetzungsalgorithmen, welche das Austauschen von Seiten übernehmen. Ein weiteres Problem was beim Paging gelöst werden muss, ist die eventuell entstehende Inkonsistenz. D ieses Problem wird wie bekanntermaßen üblich durch Dirty-Bits in den Pages gelöst. Verwirrend ist anfangs der Zusammenhang von Segmentierung und Paging. Letztendlich laufen beide Technologien gleichzeitig auf einem modernen System und ergänzen sich gegenseitig. Paging ist hinter den Segmentierungsvorgang geschalten, um Transparenz zu gewährleisten. Die durch die Segmentierung berechnete bzw. übergebene lineare Adresse entspricht ohne Paging der physikalischen. Falls Paging aktiv ist, muss noch etwas mehr getan werden. Die Umsetzung von Linearer in Physikalischer Adresse hängt vom verwendeten Paging ab. Normalerweise wird über die ersten Bits die Page-Table referenziert und über die folgenden der Pagetable-Eintrag, aus dem die Basisadresse geholt wird. Der Offset wird normalerweise beibehalten. Beschreiben Sie was bei einem Page-Fault intern alles abläuft? Während Abarbeitung einer Befehlssequenz erfolgen mehrere Seitenzugriffe Es erfolgt ein Zugriff auf eine Seite. Prozessor prüft die Seite (ist sie im Speicher?). Seite gibt Page Not Present State zurück (d.h. Seite nicht im Speicher) CPU löst Page Fault Exception aus (Siehe System-Aufruf-Deskriptoren) Betriebssystem gibt in Auftrag die Seite von Platte zu holen Prozessor aktiviert Festplattenhardware und positioniert Leseköpfe Seite wird über DMA-Transfer von Disk-To-free Memory übertragen Betriebssystem aktualisiert Pagetable einschließlich des TLB (flush TLB) Betriebssystem startet den unterbrochenen Befehl neu Nennen Sie Vorteile und Nachteile des Pagings gegenüber Segmentation-Only! Performanceerhöhung eines Multitasking-Betriebssystems Verwaltung der Swap-Datei wird durch die Verwendung konstanter Speicherblöcke einfacher nur die 4-KByte werden eingelagert, die tatsächlich benötigt werden und nicht das gesamte Segment Nachteile: Ausführung verzögert sich, weil die Adresse erst dekodiert werden muß bei Zugriff auf eine Seite/Page evtl. erst Einlagerung dieser vom Sekundärspeicher notwendig (Present-Bit) Wie kann man die Adressdekodierung beim Paging umgehen? Durch Translation Lookaside Buffer. Ein TLB ist ein assoziativer Vierwege-Cache, welcher die 32 Page-Table-Einträge aufnimmt, auf die der Prozessor zuletzt zugegriffen hat (LRU-Strategie). Ein TLB Eintrag besteht aus drei logischen Blöcken: Datenblock mit Page-Attributen und physikalische Basisadresse einer Page Tagblock enthält die oberen 17 Bit einer linearen Adresse und Schutz-Bits LRU-Block (Least Recently Used) zeigt letzten Zugriff an Page- und Segmentschutz Zuerst wirkt der Segmentschutz und danach Pageschutz. Pageschutz ist nur 2-stufig. Die inneren drei Privilegebenen sind beim Paging als Supervisor-Code geschützt. Die äußere Ebene ist User-Code. Ein Zugriffsversuch einer User-Page auf eine Supervisor-Page löst eine Exception aus. Was unterscheidet kooperatives und preemtives Multitasking? Beim kooperativen Multitasking entscheiden die Tasks selbst über die Umschaltung der Prozessorleistung. (Naives und Gutgläubiges Verfahren, daß an die Vernunft aller Tasks und somit aller Programmierer glaubt : ) Preemptives Multitasking ist echtes Multitasking. Ein externer Timer steuert die Umschaltung der Tasks. Die Tasks können somit keinen Einfluss auf die Betriebsmittelumschaltung nehmen. Kapitel 4 - Speicherhierarchie und Caches Was bedeutet die Eigenschaft Lokalität? Aus programmtechnischer Sicht wiederholen sich oft Befehle und ganze Programmteile. Somit werden Daten







Flashcard 7657312881932

Question
[...] copies content of included header file at position of include directive in source file
Answer
C preprocessor

statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Parent (intermediate) annotation

Open it
C preprocessor copies content of included header file at position of include directive in source file

Original toplevel document (pdf)

cannot see any pdfs







Flashcard 7657314454796

Question
C preprocessor copies content of [...] at position of include directive in source file
Answer
included header file

statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Parent (intermediate) annotation

Open it
C preprocessor copies content of included header file at position of include directive in source file

Original toplevel document (pdf)

cannot see any pdfs







Flashcard 7657316027660

Question
C preprocessor copies content of included header file at position of [...] in source file
Answer
include directive

statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Parent (intermediate) annotation

Open it
C preprocessor copies content of included header file at position of include directive in source file

Original toplevel document (pdf)

cannot see any pdfs







Flashcard 7657317600524

Question
C preprocessor copies content of included header file at position of include directive in [...]
Answer
source file

statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Parent (intermediate) annotation

Open it
C preprocessor copies content of included header file at position of include directive in source file

Original toplevel document (pdf)

cannot see any pdfs







Flashcard 7657319435532

Question

Until [...], shrinking transistors (feature size) reduced
capacitive load + voltage
➜Enabled higher frequencies

Since then, voltage and frequency remain relatively stable
➜Otherwise cooling (e.g., 300W) too costly or
impractical (e.g., mobile devices)

Answer
2003

statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Parent (intermediate) annotation

Open it
Until 2003, shrinking transistors (feature size) reduced capacitive load + voltage ➜Enabled higher frequencies Since then, voltage and frequency remain relatively stable ➜Otherwise cooling (e.g.,

Original toplevel document (pdf)

cannot see any pdfs







Flashcard 7657321008396

Question

Until 2003, [...] reduced
capacitive load + voltage
➜Enabled higher frequencies

Since then, voltage and frequency remain relatively stable
➜Otherwise cooling (e.g., 300W) too costly or
impractical (e.g., mobile devices)

Answer
shrinking transistors (feature size)

statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Parent (intermediate) annotation

Open it
Until 2003, shrinking transistors (feature size) reduced capacitive load + voltage ➜Enabled higher frequencies Since then, voltage and frequency remain relatively stable ➜Otherwise cooling (e.g., 300W) too costly or impractical (e.g.,

Original toplevel document (pdf)

cannot see any pdfs







Flashcard 7657322581260

Question
Since [...], voltage and frequency remain relatively stable
➜Otherwise cooling (e.g., 300W) too costly or
impractical (e.g., mobile devices)
Answer
2003

statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Parent (intermediate) annotation

Open it
Until 2003, shrinking transistors (feature size) reduced capacitive load + voltage ➜Enabled higher frequencies Since then, voltage and frequency remain relatively stable ➜Otherwise cooling (e.g., 300W) too costly or impractical (e.g., mobile devices)

Original toplevel document (pdf)

cannot see any pdfs







Flashcard 7657324154124

Question
Since then, voltage and frequency [...]
➜Otherwise cooling (e.g., 300W) too costly or
impractical (e.g., mobile devices)
Answer
remain relatively stable

statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Parent (intermediate) annotation

Open it
Until 2003, shrinking transistors (feature size) reduced capacitive load + voltage ➜Enabled higher frequencies Since then, voltage and frequency remain relatively stable ➜Otherwise cooling (e.g., 300W) too costly or impractical (e.g., mobile devices)

Original toplevel document (pdf)

cannot see any pdfs







Flashcard 7657325726988

Question

Until 2003, shrinking transistors (feature size)
[...]
➜Enabled higher frequencies

Since then, voltage and frequency remain relatively stable
➜Otherwise cooling (e.g., 300W) too costly or
impractical (e.g., mobile devices)

Answer
reduced
capacitive load + voltage

statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Parent (intermediate) annotation

Open it
Until 2003, shrinking transistors (feature size) reduced capacitive load + voltage ➜Enabled higher frequencies Since then, voltage and frequency remain relatively stable ➜Otherwise cooling (e.g., 300W) too costly or impractical (e.g., mobile devices)

Original toplevel document (pdf)

cannot see any pdfs







Flashcard 7657329397004

Tags
#has-images





statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill






Flashcard 7657334377740

Question

#include "filename"

➜Search for filename in [...]

Answer
compiler’s include path and directory of the source file

statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Parent (intermediate) annotation

Open it
#include "filename" ➜Search for filename in compiler’s include path and directory of the source file

Original toplevel document (pdf)

cannot see any pdfs







Flashcard 7657335950604

Question

[...]

➜Search for filename in compiler’s include path and directory of the source file

Answer
#include "filename"

statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Parent (intermediate) annotation

Open it
#include "filename" ➜Search for filename in compiler’s include path and directory of the source file

Original toplevel document (pdf)

cannot see any pdfs







Flashcard 7657338309900

Question

[...]

➜ Search for path/to/filename in include and source path

Answer
#include "path/to/filename"

statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Parent (intermediate) annotation

Open it
#include "path/to/filename" ➜ Search for path/to/filename in include and source path

Original toplevel document (pdf)

cannot see any pdfs







Flashcard 7657339882764

Question

#include "path/to/filename"

➜ Search for [...] in include and source path

Answer
path/to/filename

statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Parent (intermediate) annotation

Open it
#include "path/to/filename" ➜ Search for path/to/filename in include and source path

Original toplevel document (pdf)

cannot see any pdfs







Flashcard 7657341455628

Question

#include "path/to/filename"

➜ Search for path/to/filename in [...]

Answer
include and source path

statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Parent (intermediate) annotation

Open it
#include "path/to/filename" ➜ Search for path/to/filename in include and source path

Original toplevel document (pdf)

cannot see any pdfs







Flashcard 7657345125644

Tags
#has-images





statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill






Flashcard 7657350892812

Tags
#has-images





statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill






Flashcard 7657355611404

Question
CMOS = [...]
Answer
complementary [...]

statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Parent (intermediate) annotation

Open it
CMOS = complementary metal oxide semiconductor

Original toplevel document (pdf)

cannot see any pdfs







Flashcard 7657357970700

Question
CMOS = complementary [...]
Answer
metal [...]

statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Parent (intermediate) annotation

Open it
CMOS = complementary metal oxide semiconductor

Original toplevel document (pdf)

cannot see any pdfs







Flashcard 7657360592140

Question
CMOS = complementary metal [...]
Answer
oxide [...]

statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Parent (intermediate) annotation

Open it
CMOS = complementary metal oxide semiconductor

Original toplevel document (pdf)

cannot see any pdfs







Flashcard 7657362951436

Question
CMOS = complementary metal oxide [...]
Answer
semiconductor

statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Parent (intermediate) annotation

Open it
CMOS = complementary metal oxide semiconductor

Original toplevel document (pdf)

cannot see any pdfs







Flashcard 7657364524300

Question
[...] = complementary metal oxide semiconductor
Answer
CMOS

statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Parent (intermediate) annotation

Open it
CMOS = complementary metal oxide semiconductor

Original toplevel document (pdf)

cannot see any pdfs







Flashcard 7657366359308

Question

Pointers can only point to variables [...]

int* p; // variable to store address of int variable

Answer
of specific type

statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Parent (intermediate) annotation

Open it
Pointers can only point to variables of specific type int* p; // variable to store address of int variable

Original toplevel document (pdf)

cannot see any pdfs







Flashcard 7657368194316

Question
  • Structure is collection of variables that belong together
  • A structure is a new type

  • Example:

[...] 
Answer
struct point { int x; int y; };

statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Parent (intermediate) annotation

Open it
Structure is collection of variables that belong together A structure is a new type Example: struct point { int x; int y; };

Original toplevel document (pdf)

cannot see any pdfs







Flashcard 7657369767180

Question
  • Structure is collection of variables that [...]
  • A structure is a new type

  • Example:

struct point
{
  int x;
  int y;
};
Answer
belong together

statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Parent (intermediate) annotation

Open it
Structure is collection of variables that belong together A structure is a new type Example: struct point { int x; int y; };

Original toplevel document (pdf)

cannot see any pdfs







Flashcard 7657371340044

Question
  • A structure is [...]

struct point
{
  int x;
  int y;
};
Answer
a new type

statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Parent (intermediate) annotation

Open it
Structure is collection of variables that belong together A structure is a new type Example: struct point { int x; int y; };

Original toplevel document (pdf)

cannot see any pdfs







Flashcard 7657372912908

Question
Pipelining funktioniert gut mit einer [...] Architektur.
Answer
LOAD/STORE

statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Parent (intermediate) annotation

Open it
Pipelining funktioniert gut mit einer LOAD/STORE Architektur.

Original toplevel document

Grundprinzipien der Rechnerarchitektur
einen Verweis auf die Nächste enthalten. Sprünge sind einfach möglich. Angewandt wird dies in Form von Opcodes, welche nichts anderes als Adressen auf Mikroinstruktionen im Steuerspeicher sind. <span>Kapitel 6 - Pipelining Wozu dient Pipelining? Pipelining soll es ermöglichen Befehle überlappt auszuführen. Dazu sind ein einheitliches Befehlsformat fester Länge Grundlage. Deshalb werden werden nur auf Register getätigt. Für Speicheroperationen wird die LOAD / STORE Philosophie verfolgt, um langsame Hauptspeicherzugriffe zu minimieren. Was ist Voraussetzung für Pipelining? Die Befehlsverarbeitungsphase muss sich in mehrere voneinander unabhängige Phasen unterteilen lassen. Die einfachste Form einer Pipeline ist die 5-stufige mit folgenden Phasen: Befehl holen Befehl dekodieren Befehl ausführen Auf Speicher zugreifen Ergebnis in Register schreiben Moderene CPU's haben weitaus komplexere Pipelines, in denen die einzelnen Stufen wiederrum in mehrere sich überlappende Phasen aufgeteilt werden. Der allgemeine Aufbau einer (fünfstufigen) Pipeline Um Parallelität in der Befehlsausführungsphase zu erreichen, wird der Datenpfad so konstruiert, daß folgende (hier fünf) Phasen unabhänig voneinander arbeiten können. Nur so ist es möglich eine verzahnte Abarbeitung mehrerer Befehle zu erreichen. Abb.: Die Piplelinestufen Somit wird ,nachdem eine Pipeline gefüllt ist, im Optimalfall pro Takt ein Befehl fertig. (CPI = 1) Welche Pipeline-Konflikte müssen behandelt werden? Datenabhängigkeiten (Data Hazards) Sind logische Abhängigkeiten, welche eine verzögerte Abarbeitung erfordern, weil z.B. ein Folgebefehl auf ein Ergebnis eines anderen Befehles warten muss. Jump- / Branchverzögerungen (Control Hazards) Bei Sprungbefehlen liegt oft das Sprungziel nach der Dekodieung noch nicht fest. Somit müssen Techniken eingesetzt werden um diese Wartezeiten zu minimieren. (Branch Prediction) Ressourcenkonflikte (Structural Hazards) Bei bestimmten Befehlskombinationen ist es unter Umständen möglich, daß ein Teilwerk seine Arbeit wiederholen muss. Solche Ressourcenkonflikte treten dann auf, wenn nicht jeder Teilphase völlig unabhängige Teilwerke zugeordnet sind. Ein Beispiel ist z.B. ein zeitgleicher Lesezugriff eines LOAD/STORE Befehles, welcher sich zwangsweise mit einem eventuellen MEM ACCESS eines anderen Befehles überschneidet. Abhilfe können hier Dual-Port RAM, Havard-Architektur oder getrennte Code- und Datencaches schaffen. Welche drei verschiedenen Datenabhängigkeiten gibt es? RAW, WAW und WAR-Konflikte sind Datenabnhänigkeiten, welche in Pipelines auftreten können. Dabei ist das RAW-Problem für Pipelines typisch. WAR Konflikte treten eher bei Out-Of-Order Execution auf. Um Read-After-Write Konflikte aufzulösen, gibt es verschiedene Ansätze wie Softwarelösungen ( Compileroptimierung), Scoreboarding (zentrale Steuerlogik) und Forwarding (zusätzlicher Datenpfad). Was ist Forwarding? Beim Forwarding wird ein Bypass eingerichtet, welcher ein Ergebniss einer Operation schon einem Folgebefehl zur Verfügung stellt, bevor es überhaupt in ein Register geschrieben wurde. Aber trotz Load-Forwarding hat ein Ladebefehl eine Verzögerung, welche nicht gänzlich eliminiert werden kann. In diesem Fall kann die Delayed-Load Technik oder auch eine Befehlsumordnung Anhilfe schaffen. Was ist die Delayed Load-Technik? Bei der Delayed Load-Technik wird die Verzögerung nach einem LOAD Befehl als architektonisches Merkmal angesehn und den Compilerbauern offengelegt. Diese können nun durch Befehlsumordnungen versuchen, nach einem LOAD-Befehl einen datenunabhängigen Befehl einzufügen, um den Slot zu füllen. Zusammenfassung Pipelining Pipelines werden in allen modernen CPUs benutzt. Die UltraSparc2 hat neun und der P2 zwölf Stufen. Der Intel Pentium Itanium weißt eine 20 stufige Superpinepline (pipeline in der sich einzelne Stufen überlappen können) auf! Pipes werden heutzutage in Kombination mit der Superskalartechnik verwendet, um höchste Effizienz und Parallelverarbeitung gewährleisten zu können. Die fünf grundlegenden Stufen einer einfachen Pipeline sind IF,ID,EX,MEM und WB. Takte T = Befehle + (Pipestufen - 1) Folgende Abhängigkeiten verhindern, dass die CPI auf eins gehen: Strucual Hazards bzw. Ressourcenkonflikte IF und MEM wollen gleichzeitig auf Speicher lesend oder schreibend zugreifen. Das geht nicht, außer bei Dual-Port-RAM, welcher aber sehr teuer ist. Dieses Problem tritt aber bei modernen CPU's kaum noch auf, da eh intern eine Havard-ähnliche Architektur mit getrenntem Befehls- und Datencache gearbeitet wird. Data Hazards bzw. Datenabhängigkeiten Ein Folgebefehl wartet auf das Writeback der darüber liegenden Pipe, da er von diesem Befehl abhängig ist. Dies kann durch Nops bzw. Stalls ineffizient gelöst werden. Besser der Programmierer oder der Compiler löst diese Abhängigkeiten durch eine clevere Umordnung der Befehlsfolge auf. Es gibt aber noch eine andere Möglichkeit, welche aber hardwareseitig unterstützt werden muss. (VLIW, Superskalar) Forwarding Beim Forwarding werden Ergebnisse, sobald sie vorliegen an die nächste Stufe weitergereicht und nicht erst auf das Write Back gewartet. In anderen Worten: Das Ergebnis der ALU wird dieser sofort wieder eingespeist. Control Hazards bzw. Sprungverzögerungen Sprungergebnisse stehen erst in der Write Back Phase an. Moderne Prozessoren haben aber schon in der Fetch/Decode-Einheit eine Logik, welche die Zieladresse des Sprunges berechnet. Eine andere Möglichkeit ist die des spekulativen Ausführens. Hier tritt aber das Problem auf, dass viel Aufwand bei falscher Spekulation getrieben werden muss. Was ist der Unterschied zwischen echten und unechten Datenabhängigkeiten? Echte Datenabhängigkeiten sind RAW-Konflikte, bei dem ein Befehl auf die Beendigung eines Anderen warten muss, da er das Ergebnis als Operand benötigt. Unechte Datenabhängigkeit sind Abhängigkeiten, welche nur durch Namensabhängigkeit entstehen. Es gibt zwei Arten unechter Datenabhängigkeit: Antidependence sind WAR-Konflikte, welche entstehen, wenn ein Folgebefehl auf ein Register schreiben möchte, das noch von einem Anderen benutzt wird. Output Dependece sind WAW-Konflikte, welche entstehen, wenn mehrere Befehle auf ein und das selbe Register schreiben. Hier muss sichergestellt werden, daß die Schreibreihenfolge der der Befehle entspricht. Beide Abhängigkeiten können durch Register Renaming vermindert werden! Kapitel 7 - Branch Prediction Control Hazards (Jump / Branch Problematik) Sprungbefehle stellen einen Dorn im Auge einer jeden Pipeline dar, da diese besondere Vorkehrungen erfordern. D







Flashcard 7657374485772

Question
[...] funktioniert gut mit einer LOAD/STORE Architektur.
Answer
Pipelining

statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Parent (intermediate) annotation

Open it
Pipelining funktioniert gut mit einer LOAD/STORE Architektur.

Original toplevel document

Grundprinzipien der Rechnerarchitektur
einen Verweis auf die Nächste enthalten. Sprünge sind einfach möglich. Angewandt wird dies in Form von Opcodes, welche nichts anderes als Adressen auf Mikroinstruktionen im Steuerspeicher sind. <span>Kapitel 6 - Pipelining Wozu dient Pipelining? Pipelining soll es ermöglichen Befehle überlappt auszuführen. Dazu sind ein einheitliches Befehlsformat fester Länge Grundlage. Deshalb werden werden nur auf Register getätigt. Für Speicheroperationen wird die LOAD / STORE Philosophie verfolgt, um langsame Hauptspeicherzugriffe zu minimieren. Was ist Voraussetzung für Pipelining? Die Befehlsverarbeitungsphase muss sich in mehrere voneinander unabhängige Phasen unterteilen lassen. Die einfachste Form einer Pipeline ist die 5-stufige mit folgenden Phasen: Befehl holen Befehl dekodieren Befehl ausführen Auf Speicher zugreifen Ergebnis in Register schreiben Moderene CPU's haben weitaus komplexere Pipelines, in denen die einzelnen Stufen wiederrum in mehrere sich überlappende Phasen aufgeteilt werden. Der allgemeine Aufbau einer (fünfstufigen) Pipeline Um Parallelität in der Befehlsausführungsphase zu erreichen, wird der Datenpfad so konstruiert, daß folgende (hier fünf) Phasen unabhänig voneinander arbeiten können. Nur so ist es möglich eine verzahnte Abarbeitung mehrerer Befehle zu erreichen. Abb.: Die Piplelinestufen Somit wird ,nachdem eine Pipeline gefüllt ist, im Optimalfall pro Takt ein Befehl fertig. (CPI = 1) Welche Pipeline-Konflikte müssen behandelt werden? Datenabhängigkeiten (Data Hazards) Sind logische Abhängigkeiten, welche eine verzögerte Abarbeitung erfordern, weil z.B. ein Folgebefehl auf ein Ergebnis eines anderen Befehles warten muss. Jump- / Branchverzögerungen (Control Hazards) Bei Sprungbefehlen liegt oft das Sprungziel nach der Dekodieung noch nicht fest. Somit müssen Techniken eingesetzt werden um diese Wartezeiten zu minimieren. (Branch Prediction) Ressourcenkonflikte (Structural Hazards) Bei bestimmten Befehlskombinationen ist es unter Umständen möglich, daß ein Teilwerk seine Arbeit wiederholen muss. Solche Ressourcenkonflikte treten dann auf, wenn nicht jeder Teilphase völlig unabhängige Teilwerke zugeordnet sind. Ein Beispiel ist z.B. ein zeitgleicher Lesezugriff eines LOAD/STORE Befehles, welcher sich zwangsweise mit einem eventuellen MEM ACCESS eines anderen Befehles überschneidet. Abhilfe können hier Dual-Port RAM, Havard-Architektur oder getrennte Code- und Datencaches schaffen. Welche drei verschiedenen Datenabhängigkeiten gibt es? RAW, WAW und WAR-Konflikte sind Datenabnhänigkeiten, welche in Pipelines auftreten können. Dabei ist das RAW-Problem für Pipelines typisch. WAR Konflikte treten eher bei Out-Of-Order Execution auf. Um Read-After-Write Konflikte aufzulösen, gibt es verschiedene Ansätze wie Softwarelösungen ( Compileroptimierung), Scoreboarding (zentrale Steuerlogik) und Forwarding (zusätzlicher Datenpfad). Was ist Forwarding? Beim Forwarding wird ein Bypass eingerichtet, welcher ein Ergebniss einer Operation schon einem Folgebefehl zur Verfügung stellt, bevor es überhaupt in ein Register geschrieben wurde. Aber trotz Load-Forwarding hat ein Ladebefehl eine Verzögerung, welche nicht gänzlich eliminiert werden kann. In diesem Fall kann die Delayed-Load Technik oder auch eine Befehlsumordnung Anhilfe schaffen. Was ist die Delayed Load-Technik? Bei der Delayed Load-Technik wird die Verzögerung nach einem LOAD Befehl als architektonisches Merkmal angesehn und den Compilerbauern offengelegt. Diese können nun durch Befehlsumordnungen versuchen, nach einem LOAD-Befehl einen datenunabhängigen Befehl einzufügen, um den Slot zu füllen. Zusammenfassung Pipelining Pipelines werden in allen modernen CPUs benutzt. Die UltraSparc2 hat neun und der P2 zwölf Stufen. Der Intel Pentium Itanium weißt eine 20 stufige Superpinepline (pipeline in der sich einzelne Stufen überlappen können) auf! Pipes werden heutzutage in Kombination mit der Superskalartechnik verwendet, um höchste Effizienz und Parallelverarbeitung gewährleisten zu können. Die fünf grundlegenden Stufen einer einfachen Pipeline sind IF,ID,EX,MEM und WB. Takte T = Befehle + (Pipestufen - 1) Folgende Abhängigkeiten verhindern, dass die CPI auf eins gehen: Strucual Hazards bzw. Ressourcenkonflikte IF und MEM wollen gleichzeitig auf Speicher lesend oder schreibend zugreifen. Das geht nicht, außer bei Dual-Port-RAM, welcher aber sehr teuer ist. Dieses Problem tritt aber bei modernen CPU's kaum noch auf, da eh intern eine Havard-ähnliche Architektur mit getrenntem Befehls- und Datencache gearbeitet wird. Data Hazards bzw. Datenabhängigkeiten Ein Folgebefehl wartet auf das Writeback der darüber liegenden Pipe, da er von diesem Befehl abhängig ist. Dies kann durch Nops bzw. Stalls ineffizient gelöst werden. Besser der Programmierer oder der Compiler löst diese Abhängigkeiten durch eine clevere Umordnung der Befehlsfolge auf. Es gibt aber noch eine andere Möglichkeit, welche aber hardwareseitig unterstützt werden muss. (VLIW, Superskalar) Forwarding Beim Forwarding werden Ergebnisse, sobald sie vorliegen an die nächste Stufe weitergereicht und nicht erst auf das Write Back gewartet. In anderen Worten: Das Ergebnis der ALU wird dieser sofort wieder eingespeist. Control Hazards bzw. Sprungverzögerungen Sprungergebnisse stehen erst in der Write Back Phase an. Moderne Prozessoren haben aber schon in der Fetch/Decode-Einheit eine Logik, welche die Zieladresse des Sprunges berechnet. Eine andere Möglichkeit ist die des spekulativen Ausführens. Hier tritt aber das Problem auf, dass viel Aufwand bei falscher Spekulation getrieben werden muss. Was ist der Unterschied zwischen echten und unechten Datenabhängigkeiten? Echte Datenabhängigkeiten sind RAW-Konflikte, bei dem ein Befehl auf die Beendigung eines Anderen warten muss, da er das Ergebnis als Operand benötigt. Unechte Datenabhängigkeit sind Abhängigkeiten, welche nur durch Namensabhängigkeit entstehen. Es gibt zwei Arten unechter Datenabhängigkeit: Antidependence sind WAR-Konflikte, welche entstehen, wenn ein Folgebefehl auf ein Register schreiben möchte, das noch von einem Anderen benutzt wird. Output Dependece sind WAW-Konflikte, welche entstehen, wenn mehrere Befehle auf ein und das selbe Register schreiben. Hier muss sichergestellt werden, daß die Schreibreihenfolge der der Befehle entspricht. Beide Abhängigkeiten können durch Register Renaming vermindert werden! Kapitel 7 - Branch Prediction Control Hazards (Jump / Branch Problematik) Sprungbefehle stellen einen Dorn im Auge einer jeden Pipeline dar, da diese besondere Vorkehrungen erfordern. D







Flashcard 7657376058636

Question
Pipelining funktioniert [...] mit einer LOAD/STORE Architektur.
Answer
gut

statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Parent (intermediate) annotation

Open it
Pipelining funktioniert gut mit einer LOAD/STORE Architektur.

Original toplevel document

Grundprinzipien der Rechnerarchitektur
einen Verweis auf die Nächste enthalten. Sprünge sind einfach möglich. Angewandt wird dies in Form von Opcodes, welche nichts anderes als Adressen auf Mikroinstruktionen im Steuerspeicher sind. <span>Kapitel 6 - Pipelining Wozu dient Pipelining? Pipelining soll es ermöglichen Befehle überlappt auszuführen. Dazu sind ein einheitliches Befehlsformat fester Länge Grundlage. Deshalb werden werden nur auf Register getätigt. Für Speicheroperationen wird die LOAD / STORE Philosophie verfolgt, um langsame Hauptspeicherzugriffe zu minimieren. Was ist Voraussetzung für Pipelining? Die Befehlsverarbeitungsphase muss sich in mehrere voneinander unabhängige Phasen unterteilen lassen. Die einfachste Form einer Pipeline ist die 5-stufige mit folgenden Phasen: Befehl holen Befehl dekodieren Befehl ausführen Auf Speicher zugreifen Ergebnis in Register schreiben Moderene CPU's haben weitaus komplexere Pipelines, in denen die einzelnen Stufen wiederrum in mehrere sich überlappende Phasen aufgeteilt werden. Der allgemeine Aufbau einer (fünfstufigen) Pipeline Um Parallelität in der Befehlsausführungsphase zu erreichen, wird der Datenpfad so konstruiert, daß folgende (hier fünf) Phasen unabhänig voneinander arbeiten können. Nur so ist es möglich eine verzahnte Abarbeitung mehrerer Befehle zu erreichen. Abb.: Die Piplelinestufen Somit wird ,nachdem eine Pipeline gefüllt ist, im Optimalfall pro Takt ein Befehl fertig. (CPI = 1) Welche Pipeline-Konflikte müssen behandelt werden? Datenabhängigkeiten (Data Hazards) Sind logische Abhängigkeiten, welche eine verzögerte Abarbeitung erfordern, weil z.B. ein Folgebefehl auf ein Ergebnis eines anderen Befehles warten muss. Jump- / Branchverzögerungen (Control Hazards) Bei Sprungbefehlen liegt oft das Sprungziel nach der Dekodieung noch nicht fest. Somit müssen Techniken eingesetzt werden um diese Wartezeiten zu minimieren. (Branch Prediction) Ressourcenkonflikte (Structural Hazards) Bei bestimmten Befehlskombinationen ist es unter Umständen möglich, daß ein Teilwerk seine Arbeit wiederholen muss. Solche Ressourcenkonflikte treten dann auf, wenn nicht jeder Teilphase völlig unabhängige Teilwerke zugeordnet sind. Ein Beispiel ist z.B. ein zeitgleicher Lesezugriff eines LOAD/STORE Befehles, welcher sich zwangsweise mit einem eventuellen MEM ACCESS eines anderen Befehles überschneidet. Abhilfe können hier Dual-Port RAM, Havard-Architektur oder getrennte Code- und Datencaches schaffen. Welche drei verschiedenen Datenabhängigkeiten gibt es? RAW, WAW und WAR-Konflikte sind Datenabnhänigkeiten, welche in Pipelines auftreten können. Dabei ist das RAW-Problem für Pipelines typisch. WAR Konflikte treten eher bei Out-Of-Order Execution auf. Um Read-After-Write Konflikte aufzulösen, gibt es verschiedene Ansätze wie Softwarelösungen ( Compileroptimierung), Scoreboarding (zentrale Steuerlogik) und Forwarding (zusätzlicher Datenpfad). Was ist Forwarding? Beim Forwarding wird ein Bypass eingerichtet, welcher ein Ergebniss einer Operation schon einem Folgebefehl zur Verfügung stellt, bevor es überhaupt in ein Register geschrieben wurde. Aber trotz Load-Forwarding hat ein Ladebefehl eine Verzögerung, welche nicht gänzlich eliminiert werden kann. In diesem Fall kann die Delayed-Load Technik oder auch eine Befehlsumordnung Anhilfe schaffen. Was ist die Delayed Load-Technik? Bei der Delayed Load-Technik wird die Verzögerung nach einem LOAD Befehl als architektonisches Merkmal angesehn und den Compilerbauern offengelegt. Diese können nun durch Befehlsumordnungen versuchen, nach einem LOAD-Befehl einen datenunabhängigen Befehl einzufügen, um den Slot zu füllen. Zusammenfassung Pipelining Pipelines werden in allen modernen CPUs benutzt. Die UltraSparc2 hat neun und der P2 zwölf Stufen. Der Intel Pentium Itanium weißt eine 20 stufige Superpinepline (pipeline in der sich einzelne Stufen überlappen können) auf! Pipes werden heutzutage in Kombination mit der Superskalartechnik verwendet, um höchste Effizienz und Parallelverarbeitung gewährleisten zu können. Die fünf grundlegenden Stufen einer einfachen Pipeline sind IF,ID,EX,MEM und WB. Takte T = Befehle + (Pipestufen - 1) Folgende Abhängigkeiten verhindern, dass die CPI auf eins gehen: Strucual Hazards bzw. Ressourcenkonflikte IF und MEM wollen gleichzeitig auf Speicher lesend oder schreibend zugreifen. Das geht nicht, außer bei Dual-Port-RAM, welcher aber sehr teuer ist. Dieses Problem tritt aber bei modernen CPU's kaum noch auf, da eh intern eine Havard-ähnliche Architektur mit getrenntem Befehls- und Datencache gearbeitet wird. Data Hazards bzw. Datenabhängigkeiten Ein Folgebefehl wartet auf das Writeback der darüber liegenden Pipe, da er von diesem Befehl abhängig ist. Dies kann durch Nops bzw. Stalls ineffizient gelöst werden. Besser der Programmierer oder der Compiler löst diese Abhängigkeiten durch eine clevere Umordnung der Befehlsfolge auf. Es gibt aber noch eine andere Möglichkeit, welche aber hardwareseitig unterstützt werden muss. (VLIW, Superskalar) Forwarding Beim Forwarding werden Ergebnisse, sobald sie vorliegen an die nächste Stufe weitergereicht und nicht erst auf das Write Back gewartet. In anderen Worten: Das Ergebnis der ALU wird dieser sofort wieder eingespeist. Control Hazards bzw. Sprungverzögerungen Sprungergebnisse stehen erst in der Write Back Phase an. Moderne Prozessoren haben aber schon in der Fetch/Decode-Einheit eine Logik, welche die Zieladresse des Sprunges berechnet. Eine andere Möglichkeit ist die des spekulativen Ausführens. Hier tritt aber das Problem auf, dass viel Aufwand bei falscher Spekulation getrieben werden muss. Was ist der Unterschied zwischen echten und unechten Datenabhängigkeiten? Echte Datenabhängigkeiten sind RAW-Konflikte, bei dem ein Befehl auf die Beendigung eines Anderen warten muss, da er das Ergebnis als Operand benötigt. Unechte Datenabhängigkeit sind Abhängigkeiten, welche nur durch Namensabhängigkeit entstehen. Es gibt zwei Arten unechter Datenabhängigkeit: Antidependence sind WAR-Konflikte, welche entstehen, wenn ein Folgebefehl auf ein Register schreiben möchte, das noch von einem Anderen benutzt wird. Output Dependece sind WAW-Konflikte, welche entstehen, wenn mehrere Befehle auf ein und das selbe Register schreiben. Hier muss sichergestellt werden, daß die Schreibreihenfolge der der Befehle entspricht. Beide Abhängigkeiten können durch Register Renaming vermindert werden! Kapitel 7 - Branch Prediction Control Hazards (Jump / Branch Problematik) Sprungbefehle stellen einen Dorn im Auge einer jeden Pipeline dar, da diese besondere Vorkehrungen erfordern. D







Flashcard 7657377631500

Question
String is [...]
Answer
null-terminated char array

statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Parent (intermediate) annotation

Open it
String is null-terminated char array

Original toplevel document (pdf)

cannot see any pdfs







Flashcard 7657379466508

Question
C standard library contains set of string handling functions §Most of them declared in [...]
Answer
string.h

statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Parent (intermediate) annotation

Open it
C standard library contains set of string handling functions §Most of them declared in string.h

Original toplevel document (pdf)

cannot see any pdfs







Flashcard 7657381039372

Question
C standard library contains set of [...] §Most of them declared in string.h
Answer
string handling functions

statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Parent (intermediate) annotation

Open it
C standard library contains set of string handling functions §Most of them declared in string.h

Original toplevel document (pdf)

cannot see any pdfs







Flashcard 7657382612236

Question

Assign address of another variable

[...]

Answer
int* p = &i; // assign address of i

statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Parent (intermediate) annotation

Open it
Assign address of another variable int* p = &i; // assign address of i

Original toplevel document (pdf)

cannot see any pdfs







Flashcard 7657384447244

Question
Multicore processor example [...]
Answer
Intel Xeon (really, any modern CPU)

statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Parent (intermediate) annotation

Open it
Multicore processor example Intel Xeon (really, any modern CPU)

Original toplevel document (pdf)

cannot see any pdfs







Flashcard 7657386020108

Question
[...] processor
Designed for parallelism and high throughput at expense of higher latency and lower single-thread performance
Answer
Manycore

statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Parent (intermediate) annotation

Open it
Manycore processor Designed for parallelism and high throughput at expense of higher latency and lower single-thread performance

Original toplevel document (pdf)

cannot see any pdfs







Flashcard 7657387592972

Question
Manycore processor
Designed for [...] and high throughput at expense of higher latency and lower single-thread performance
Answer
parallelism

statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Parent (intermediate) annotation

Open it
Manycore processor Designed for parallelism and high throughput at expense of higher latency and lower single-thread performance

Original toplevel document (pdf)

cannot see any pdfs







Flashcard 7657389165836

Question
Manycore processor
Designed for parallelism and [...] at expense of higher latency and lower single-thread performance
Answer
high throughput

statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Parent (intermediate) annotation

Open it
Manycore processor Designed for parallelism and high throughput at expense of higher latency and lower single-thread performance

Original toplevel document (pdf)

cannot see any pdfs







Flashcard 7657390738700

Question
Manycore processor
Designed for parallelism and high throughput at expense of [...] and lower single-thread performance
Answer
higher latency

statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Parent (intermediate) annotation

Open it
Manycore processor Designed for parallelism and high throughput at expense of higher latency and lower single-thread performance

Original toplevel document (pdf)

cannot see any pdfs







Flashcard 7657392311564

Question
Manycore processor
Designed for parallelism and high throughput at expense of higher latency and [...]
Answer
lower single-thread performance

statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Parent (intermediate) annotation

Open it
Manycore processor Designed for parallelism and high throughput at expense of higher latency and lower single-thread performance

Original toplevel document (pdf)

cannot see any pdfs







Flashcard 7657393884428

Question
[...] How long it takes to complete a task
Answer
Response time (execution time)

statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Parent (intermediate) annotation

Open it
Response time (execution time) How long it takes to complete a task

Original toplevel document (pdf)

cannot see any pdfs







Flashcard 7657395457292

Question
Response time (execution time) How long it takes [...]
Answer
to complete a task

statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Parent (intermediate) annotation

Open it
Response time (execution time) How long it takes to complete a task

Original toplevel document (pdf)

cannot see any pdfs







Flashcard 7657398603020

Question

Assignment of structures

Structure assignment copies values of all members
[...]

struct point {
  int x;
  int y;
};
struct point a = {1, 2};
struct point b = a;

printf("x = %d, y = %d", b.x, b.y);
// Output: x = 1, y = 2

.

struct point {
  int xy[2];
};
struct point a= {{1, 2}};
struct point b= a;

printf("xy[0] = %d, xy[1] = %d", b.xy[0], b.xy[1]);
// Output: xy[0] = 1, xy[1] = 2
Answer
shallow copy only

statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Parent (intermediate) annotation

Open it
Assignment of structures Structure assignment copies values of all members ➜ shallow copy only struct point { int x; int y; }; struct point a = {1, 2}; struct point b = a; printf("x = %d, y = %d", b.x, b.y); // Output: x = 1, y = 2 . struct point { int xy[2]; }; struct point a= {

Original toplevel document (pdf)

cannot see any pdfs







Flashcard 7657400175884

Question

Assignment of structures

Structure assignment [...]
➜ shallow copy only

struct point {
  int x;
  int y;
};
struct point a = {1, 2};
struct point b = a;

printf("x = %d, y = %d", b.x, b.y);
// Output: x = 1, y = 2

.

struct point {
  int xy[2];
};
struct point a= {{1, 2}};
struct point b= a;

printf("xy[0] = %d, xy[1] = %d", b.xy[0], b.xy[1]);
// Output: xy[0] = 1, xy[1] = 2
Answer
copies values of all members

statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Parent (intermediate) annotation

Open it
Assignment of structures Structure assignment copies values of all members ➜ shallow copy only struct point { int x; int y; }; struct point a = {1, 2}; struct point b = a; printf("x = %d, y = %d", b.x, b.y); // Output: x = 1, y = 2 . struct point { int xy[2];

Original toplevel document (pdf)

cannot see any pdfs







Flashcard 7657402797324

Question

[...]

  • High-level view of complete computing system
  • Example: For a desktop computer, it includes the components CPU, memory, I/O, and interconnection paths between them System architecture
Answer
System architecture

statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Parent (intermediate) annotation

Open it
System architecture High-level view of complete computing system Example: For a desktop computer, it includes the components CPU, memory, I/O, and interconnection paths between them System architecture </s

Original toplevel document (pdf)

cannot see any pdfs







3 metrics of cache performance optimization

  1. Reducing the miss rate
    • Higher associativity ✅
    • Larger cache size ✅
    • Larger block size ✅
    • + Software optimization

  2. Reducing the miss penalty
    • Multilevel caches
  3. Reducing the hit time
    • Small and simple caches ✅
statusnot read reprioritisations
last reprioritisation on suggested re-reading day
started reading on finished reading on

pdf

cannot see any pdfs




Flashcard 7657466498316

Tags
#has-images #recurrent-neural-networks #rnn
[unknown IMAGE 7100438023436]
Question
Based on our initial discussion, an ideal model for customer base analysis in data-rich environments would combine a robust [...] capability both in the short and in the long-term with limited engineering requirements at low computational cost and providing a direct link toward managerial decision-making.
Answer
forecasting

statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Parent (intermediate) annotation

Open it
Based on our initial discussion, an ideal model for customer base analysis in data-rich environments would combine a robust forecasting capability both in the short and in the long-term with limited engineering requirements at low computational cost and providing a direct link toward managerial decision-making. <

Original toplevel document (pdf)

cannot see any pdfs







Flashcard 7657468333324

Tags
#tensorflow #tensorflow-certificate
Question

# Create X and y values (features and labels)

y = insurance_one_hot['charges']

X = insurance_one_hot.drop('charges', axis=[...])

Answer
1

statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Parent (intermediate) annotation

Open it
# Create X and y values (features and labels) y = insurance_one_hot['charges'] X = insurance_one_hot.drop('charges', axis=1)

Original toplevel document

TfC_01_FINAL_EXAMPLE.ipynb
r example: Use pandas get_dummies() function insurance_one_hot = pd.get_dummies(insurance,dtype="int32") #to avoid bool which generate problem with model fitting in TensorFlow insurance_one_hot <span># Create X and y values (features and labels) y = insurance_one_hot['charges'] X = insurance_one_hot.drop('charges', axis=1) #y = y.values # This is not necessary #X = X.values #X, y, X.shape, y.shape # Create training and test datasets #my way: from sklearn.model_selection import train_test_split X_train, X_







#tensorflow #tensorflow-certificate

How to generate such data?

from sklearn.datasets import make_circles # Make 1000 examples
n_samples=1000 # Create circles
X, y = make_circles(n_samples, noise=0.03, random_state=42)

H

statusnot read reprioritisations
last reprioritisation on suggested re-reading day
started reading on finished reading on

TfC_02_classification-PART_1
ions Multiclass image classificaton: pizza, steak, sushi Input_shape = [None, 224, 224, 3] - single image Input shape = [32, 224, 224, 3] - common batch size of images 32 is a common batch size <span>How to generate such data? from sklearn.datasets import make_circles # Make 1000 examples n_samples=1000 # Create circles X, y = make_circles(n_samples, noise=0.03, random_state=42) How to visualize such data? plt.scatter(X[:,0],X[:,1], c=y, cmap=plt.cm.RdYlBu); Input and output shapes X.shape, y.shape ((1000, 2), (1000,)) Model building tf.random.set_seed(42) model




Flashcard 7657472265484

Tags
#tensorflow #tensorflow-certificate
Question

Higher [...] leads to less false negatives.

Answer
recall

statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Parent (intermediate) annotation

Open it
Recall Higher recall leads to less false negatives.

Original toplevel document

TfC_02_classification-PART_2
ccuracy tf.keras.metrics.Accuracy() sklearn.metrics.accuracy_score() Not the best for imbalanced classes Precision For imbalanced class problems. Higher precision leads to less false positives. <span>Recall Higher recall leads to less false negatives. Tradeoff between recall and precision. F1-score Combination of precision and recall, ususally a good overall metric for classification models. keyboard_arrow_down Confusion matrix Can b







Flashcard 7657481964812

Tags
#has-images #tensorflow #tensorflow-certificate
[unknown IMAGE 7626420784396]
Question
MAE
  • tf.keras.losses.MAE()
  • tf.metrics.mean_absolute_error()
  • great starter metrics for [...] regression problem
Answer
any

statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Parent (intermediate) annotation

Open it
MAE tf.keras.losses.MAE() tf.metrics.mean_absolute_error() great starter metrics for any regression problem

Original toplevel document

TfC 01 regression
st_labels, c="green", label="Testing data") plt.scatter(test_data, predictions, c="red", label="Predictions") plt.legend(); Common regression evaluation metrics keyboard_arrow_down Introduction <span>For regression problems: MAE tf.keras.losses.MAE() tf.metrics.mean_absolute_error() great starter metrics for any regression problem MSE tf.keras.losses.MSE() tf.metrics.mean_square_error() when larger errors are more significant that smaller errors Huber tf.keras.losses.Huber() combintion of MSE and MAE less sensitive to outliers than MSE Take away: You should minimize the time between your experiments (that's way you should start with smaller models). The more experiments you do, the more things you figure out that don't work. Tracking your experiments One really good habit is to track the results of your experiments. There are tools to help us! Resource: Try: Tensorboard - a component of Tensorflow library t







[unknown IMAGE 7626420784396] #has-images #tensorflow #tensorflow-certificate
Huber
  • tf.keras.losses.Huber()
  • combintion of MSE and MAE less sensitive to outliers than MSE
statusnot read reprioritisations
last reprioritisation on suggested re-reading day
started reading on finished reading on


Parent (intermediate) annotation

Open it
trics.mean_absolute_error() great starter metrics for any regression problem MSE tf.keras.losses.MSE() tf.metrics.mean_square_error() when larger errors are more significant that smaller errors <span>Huber tf.keras.losses.Huber() combintion of MSE and MAE less sensitive to outliers than MSE Take away: You should minimize the time between your experiments (that's way you should start with smaller models). The more experiments you do, the more things you figure out that don'

Original toplevel document

TfC 01 regression
st_labels, c="green", label="Testing data") plt.scatter(test_data, predictions, c="red", label="Predictions") plt.legend(); Common regression evaluation metrics keyboard_arrow_down Introduction <span>For regression problems: MAE tf.keras.losses.MAE() tf.metrics.mean_absolute_error() great starter metrics for any regression problem MSE tf.keras.losses.MSE() tf.metrics.mean_square_error() when larger errors are more significant that smaller errors Huber tf.keras.losses.Huber() combintion of MSE and MAE less sensitive to outliers than MSE Take away: You should minimize the time between your experiments (that's way you should start with smaller models). The more experiments you do, the more things you figure out that don't work. Tracking your experiments One really good habit is to track the results of your experiments. There are tools to help us! Resource: Try: Tensorboard - a component of Tensorflow library t




Flashcard 7657485896972

Tags
#recurrent-neural-networks #rnn
Question
Different [...] models can be created depending on how we manipulate the input data; i.e., we can conceal certain parts of the input sequence and train the model to predict what is missing, to ‘‘fill in the blanks”.
Answer
seq2seq

statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Parent (intermediate) annotation

Open it
Different seq2seq models can be created depending on how we manipulate the input data; i.e., we can conceal certain parts of the input sequence and train the model to predict what is missing, to ‘‘fill i

Original toplevel document (pdf)

cannot see any pdfs