 Measures of the price change can be derived from the mathematical relationship used to calculate the price of the bond. The first of these measures (duration) estimates the change in the price for a given change in interest rates. The second measure (convexity) improves on the duration estimate by taking into account the fact that the relationship between price and yield-to-maturity of a fixed-rate bond is not linear.
If you want to change selection, open original toplevel document below and click on "Move attachment"

#### Parent (intermediate) annotation

Open it
est and principal payments in the full amount and on the scheduled dates. Assuming no default, the return is also affected by changes in interest rates that affect coupon reinvestment and the price of the bond if it is sold before it matures. <span>Measures of the price change can be derived from the mathematical relationship used to calculate the price of the bond. The first of these measures (duration) estimates the change in the price for a given change in interest rates. The second measure (convexity) improves on the duration estimate by taking into account the fact that the relationship between price and yield-to-maturity of a fixed-rate bond is not linear. <span><body><html>

#### Original toplevel document

Reading 54  Understanding Fixed‑Income Risk and Return (Intro)
It is important for analysts to have a well-developed understanding of the risk and return characteristics of fixed-income investments. Beyond the vast worldwide market for publicly and privately issued fixed-rate bonds, many financial assets and liabilities with known future cash flows may be evaluated using the same principles. The starting point for this analysis is the yield-to-maturity, or internal rate of return on future cash flows, which was introduced in the fixed-income valuation reading. The return on a fixed-rate bond is affected by many factors, the most important of which is the receipt of the interest and principal payments in the full amount and on the scheduled dates. Assuming no default, the return is also affected by changes in interest rates that affect coupon reinvestment and the price of the bond if it is sold before it matures. Measures of the price change can be derived from the mathematical relationship used to calculate the price of the bond. The first of these measures (duration) estimates the change in the price for a given change in interest rates. The second measure (convexity) improves on the duration estimate by taking into account the fact that the relationship between price and yield-to-maturity of a fixed-rate bond is not linear. Section 2 uses numerical examples to demonstrate the sources of return on an investment in a fixed-rate bond, which includes the receipt and reinvestment of coupon interest