Do you want BuboFlash to help you learning these things? Click here to log in or create user.

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

The key idea behind the probabilistic framework to machine learning is that learning can be thought of as inferring plausible models to explain observed data

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

y> Stationarity refers to the process' behaviour regarding the separation of any two points x and x' . If the process is stationary, it depends on their separation, x − x', while if non-stationary it depends on the actual position of the points x and x'. <body><html>

initeness of this function enables its spectral decomposition using the Karhunen–Loeve expansion. Basic aspects that can be defined through the covariance function are the process' stationarity, isotropy, smoothness and periodicity. [5] [6] <span>Stationarity refers to the process' behaviour regarding the separation of any two points x and x' . If the process is stationary, it depends on their separation, x − x', while if non-stationary it depends on the actual position of the points x and x'. For example, the special case of an Ornstein–Uhlenbeck process, a Brownian motion process, is stationary. If the process depends only on |x − x'|, the Euclidean distance (not the dire

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

An affine transformation does not necessarily preserve angles between lines or distances between points, though it does preserve ratios of distances between points lying on a straight line.

s related to each other leaf by an affine transformation. For instance, the red leaf can be transformed into both the small dark blue leaf and the large light blue leaf by a combination of reflection, rotation, scaling, and translation. <span>In geometry, an affine transformation, affine map [1] or an affinity (from the Latin, affinis, "connected with") is a function between affine spaces which preserves points, straight lines and planes. Also, sets of parallel lines remain parallel after an affine transformation. An affine transformation does not necessarily preserve angles between lines or distances between points, though it does preserve ratios of distances between points lying on a straight line. Examples of affine transformations include translation, scaling, homothety, similarity transformation, reflection, rotation, shear mapping, and compositions of them in any combination

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

p to: navigation, search In the theory of stochastic processes, the Karhunen–Loève theorem (named after Kari Karhunen and Michel Loève), also known as the Kosambi–Karhunen–Loève theorem [1] [2] is a representation of a stochastic process as <span>an infinite linear combination of orthogonal functions, analogous to a Fourier series representation of a function on a bounded interval. <span><body><html>

Karhunen–Loève theorem - Wikipedia Karhunen–Loève theorem From Wikipedia, the free encyclopedia (Redirected from Karhunen–Loeve expansion) Jump to: navigation, search In the theory of stochastic processes, the Karhunen–Loève theorem (named after Kari Karhunen and Michel Loève), also known as the Kosambi–Karhunen–Loève theorem [1] [2] is a representation of a stochastic process as an infinite linear combination of orthogonal functions, analogous to a Fourier series representation of a function on a bounded interval. The transformation is also known as Hotelling Transform and Eigenvector Transform, and is closely related to Principal Component Analysis (PCA) technique widely used in image processing

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

n mathematics, a function space is a set of functions between two fixed sets.

tional · Algebraic · Analytic · Smooth · Continuous · Measurable · Injective · Surjective · Bijective Constructions Restriction · Composition · λ · Inverse Generalizations Partial · Multivalued · Implicit v t e I<span>n mathematics, a function space is a set of functions between two fixed sets. Often, the domain and/or codomain will have additional structure which is inherited by the function space. For example, the set of functions from any set X into a vector space have a

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

The fall of disputational culture wasn’t the only cause for the demise of scholastic logic, however. Scholastic logic was also viewed – rightly or wrongly – as being tied to broadly Aristotelian conceptions of language

s Diafoirus resorts to disputational vocabulary to make a point about love: Distinguo, Mademoiselle; in all that does not concern the possession of the loved one, concedo, I grant it; but in what does regard that possession, nego, I deny it. <span>The fall of disputational culture wasn’t the only cause for the demise of scholastic logic, however. Scholastic logic was also viewed – rightly or wrongly – as being tied to broadly Aristotelian conceptions of language and metaphysics, which themselves fell out of favour in the dawn of the modern era with the rise of a new scientific paradigm. Despite all this, disputations continued to be practised in certain university contexts for some time – indeed, they live on in the ceremonial character of PhD defences. The point, thou

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

The fall of disputational culture wasn’t the only cause for the demise of scholastic logic, however. Scholastic logic was also viewed – rightly or wrongly – as being tied to broadly Aristotelian conceptions of language and metaphysics, which themselves fell out of favour in the dawn of the modern era with the rise of a new scientific paradigm. <body><html>

s Diafoirus resorts to disputational vocabulary to make a point about love: Distinguo, Mademoiselle; in all that does not concern the possession of the loved one, concedo, I grant it; but in what does regard that possession, nego, I deny it. <span>The fall of disputational culture wasn’t the only cause for the demise of scholastic logic, however. Scholastic logic was also viewed – rightly or wrongly – as being tied to broadly Aristotelian conceptions of language and metaphysics, which themselves fell out of favour in the dawn of the modern era with the rise of a new scientific paradigm. Despite all this, disputations continued to be practised in certain university contexts for some time – indeed, they live on in the ceremonial character of PhD defences. The point, thou

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

In computer science, functional programming is a programming paradigm—a style of building the structure and elements of computer programs—that treats computation as the evaluation of mathematical functions and avoids changing-state and mutable data

ithic) Object-oriented Actor-based Class-based Concurrent Prototype-based By separation of concerns: Aspect-oriented Role-oriented Subject-oriented Recursive Value-level (contrast: Function-level) Quantum programming v t e <span>In computer science, functional programming is a programming paradigm—a style of building the structure and elements of computer programs—that treats computation as the evaluation of mathematical functions and avoids changing-state and mutable data. It is a declarative programming paradigm, which means programming is done with expressions [1] or declarations [2] instead of statements. In functional code, the output value of a fu

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

Although such models are tractable, they are also severely limited. We can ob- tain a more general framework, while still retaining tractability, by the introduction of latent variables, leading to state space models.

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

the conditional distributions of the observed variables is , where φ is a set of parameters governing the distribution. These are known as emission probabilities

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

Lebesgue integration or abstract integration gives the same result as Riemann integration when the latter exists, so nothing you know from calculus changes, but a lot more functions are integrable

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

A Markov random field, also known as a Markov network, is a model over an undirected graph.

ne learning models like hidden Markov models, neural networks and newer models such as variable-order Markov models can be considered special cases of Bayesian networks. Markov random field[edit source] Main article: Markov random field <span>A Markov random field, also known as a Markov network, is a model over an undirected graph. A graphical model with many repeated subunits can be represented with plate notation. Other types[edit source] A factor graph is an undirected bipartite graph connecting variables a

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

re not connected (there is no path from one of the variables to the other in the Bayesian network) represent variables that are conditionally independent of each other. Each node is associated with a probability function that takes, as input, <span>a particular set of values for the node's parent variables, and gives (as output) the probability (or probability distribution, if applicable) of the variable represented by the node. <span><body><html>

ed acyclic graph (DAG). For example, a Bayesian network could represent the probabilistic relationships between diseases and symptoms. Given symptoms, the network can be used to compute the probabilities of the presence of various diseases. <span>Formally, Bayesian networks are DAGs whose nodes represent variables in the Bayesian sense: they may be observable quantities, latent variables, unknown parameters or hypotheses. Edges represent conditional dependencies; nodes that are not connected (there is no path from one of the variables to the other in the Bayesian network) represent variables that are conditionally independent of each other. Each node is associated with a probability function that takes, as input, a particular set of values for the node's parent variables, and gives (as output) the probability (or probability distribution, if applicable) of the variable represented by the node. For example, if m {\displaystyle m} parent nodes represent m {\displaystyle m} Boolean variables

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

The foreward-backward algorithm makes use of the principle of dynamic programming to compute efficiently the values that are required to obtain the posterior marginal distributions in two passes. The first pass goes forward in time while the second goes backward in t

| o 1 : t ) {\displaystyle P(X_{k}\ |\ o_{1:t})} . This inference task is usually called smoothing. <span>The algorithm makes use of the principle of dynamic programming to compute efficiently the values that are required to obtain the posterior marginal distributions in two passes. The first pass goes forward in time while the second goes backward in time; hence the name forward–backward algorithm. The term forward–backward algorithm is also used to refer to any algorithm belonging to the general class of algorithms that operate on sequence models in a forward–backward manner. I

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

rward probabilities which provide, for all , the probability of ending up in any particular state given the first observations in the sequence, i.e. . In the second pass, the algorithm computes a set of backward probabilities which provide <span>the probability of observing the remaining observations given any starting point , i.e. . These two sets of probability distributions can then be combined to obtain the distribution over states at any specific point in time given the entire observation sequence:

cific instance of this class. Contents [hide] 1 Overview 2 Forward probabilities 3 Backward probabilities 4 Example 5 Performance 6 Pseudocode 7 Python example 8 See also 9 References 10 External links Overview[edit source] <span>In the first pass, the forward–backward algorithm computes a set of forward probabilities which provide, for all k ∈ { 1 , … , t } {\displaystyle k\in \{1,\dots ,t\}} , the probability of ending up in any particular state given the first k {\displaystyle k} observations in the sequence, i.e. P ( X k | o 1 : k ) {\displaystyle P(X_{k}\ |\ o_{1:k})} . In the second pass, the algorithm computes a set of backward probabilities which provide the probability of observing the remaining observations given any starting point k {\displaystyle k} , i.e. P ( o k + 1 : t | X k ) {\displaystyle P(o_{k+1:t}\ |\ X_{k})} . These two sets of probability distributions can then be combined to obtain the distribution over states at any specific point in time given the entire observation sequence: P ( X k | o 1 : t ) = P ( X k | o 1 : k , o k + 1 : t ) ∝ P ( o k + 1 : t | X k ) P ( X k | o 1 : k ) {\displaystyle P(X_{k}\ |\ o_{1:t})=P(X_{k}\ |\ o_{1:k},o_{k+1:t})\propto P(o_{k+1:t}\ |\ X_{k})P(X_{k}|o_{1:k})} The last step follows from an application of the Bayes' rule and the conditional independence of o k + 1 : t {\displaystyle o_{k+1:t}} and o 1 : k {\displaystyle o_{1:k}} given X k {\displaystyle X_{k}} . As outlined above, the algorithm involves three steps: computing forward probabilities computing backward probabilities computing smoothed values. The forward and backward steps m

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

Let Ω be an arbitrary set. A sigma-algebra for Ω is a family of subsets of Ω that contains Ω and is closed under complements and countable unions and intersections.

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

Let Ω be an arbitrary set. A sigma-algebra for Ω is a family of subsets of Ω that contains Ω and is closed under complements and countable unions and intersections.

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

Let Ω be an arbitrary set. A sigma-algebra for Ω is a family of subsets of Ω that contains Ω and is closed under complements and countable unions and intersections.

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

If a Poisson point process has a parameter of the form , where is Lebegues measure, and is a constant, then the point process is called a homogeneous or stationary Poisson point process.

edit source] For all the different settings of the Poisson point process, the two key properties [b] of the Poisson distribution and complete independence play an important role. [25] [45] Homogeneous Poisson point process[edit source] <span>If a Poisson point process has a parameter of the form Λ = ν λ {\displaystyle \textstyle \Lambda =\nu \lambda } , where ν {\displaystyle \textstyle \nu } is Lebegues measure, which assigns length, area, or volume to sets, and λ {\displaystyle \textstyle \lambda } is a constant, then the point process is called a homogeneous or stationary Poisson point process. The parameter, called rate or intensity, is related to the expected (or average) number of Poisson points existing in some bounded region, [49] [50] where rate is usually used when the

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

In mathematics, topology (from the Greek τόπος, place, and λόγος, study) is concerned with the properties of space that are preserved under continuous deformations, such as stretching, crumpling and bending, but not tearing or gluing.

ogy (disambiguation). For a topology of a topos or category, see Lawvere–Tierney topology and Grothendieck topology. [imagelink] Möbius strips, which have only one surface and one edge, are a kind of object studied in topology. <span>In mathematics, topology (from the Greek τόπος, place, and λόγος, study) is concerned with the properties of space that are preserved under continuous deformations, such as stretching, crumpling and bending, but not tearing or gluing. This can be studied by considering a collection of subsets, called open sets, that satisfy certain properties, turning the given set into what is known as a topological space. Important

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

Among the topologies of vector spaces, those that are defined by a norm or inner product are more commonly used, as having a notion of distance between two vectors.

roperties, which in some cases can be visualized as arrows. Vector spaces are the subject of linear algebra and are well characterized by their dimension, which, roughly speaking, specifies the number of independent directions in the space. <span>Infinite-dimensional vector spaces arise naturally in mathematical analysis, as function spaces, whose vectors are functions. These vector spaces are generally endowed with additional structure, which may be a topology, allowing the consideration of issues of proximity and continuity. Among these topologies, those that are defined by a norm or inner product are more commonly used, as having a notion of distance between two vectors. This is particularly the case of Banach spaces and Hilbert spaces, which are fundamental in mathematical analysis. Historically, the first ideas leading to vector spaces can be traced back as far as the 17th century's analytic geometry, matrices, systems of linear equations, and Euclidean vectors.

status | not read | reprioritisations | ||
---|---|---|---|---|

last reprioritisation on | reading queue position [%] | |||

started reading on | finished reading on |

Borel set - Wikipedia Borel set From Wikipedia, the free encyclopedia Jump to: navigation, search In mathematics, a Borel set is any set in a topological space that can be formed from open sets (or, equivalently, from closed sets) through the operations of countable union, countable intersection, and relative complement. Borel sets are named after Émile Borel. For a topological space X, the collection of all Borel sets on X forms a σ-algebra, known as the Borel algebra or Borel σ-algebra. The Borel al

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

a topological space may be defined as a set of points, along with a set of neighbourhoods for each point, satisfying a set of axioms relating points and neighbourhoods.

n>Topological space - Wikipedia Topological space From Wikipedia, the free encyclopedia Jump to: navigation, search In topology and related branches of mathematics, a topological space may be defined as a set of points, along with a set of neighbourhoods for each point, satisfying a set of axioms relating points and neighbourhoods. The definition of a topological space relies only upon set theory and is the most general notion of a mathematical space that allows for the definition of concepts such as continuity, c

status | not read | reprioritisations | ||
---|---|---|---|---|

last reprioritisation on | reading queue position [%] | |||

started reading on | finished reading on |

of countable union, countable intersection, and relative complement. Borel sets are named after Émile Borel. For a topological space X, the collection of all Borel sets on X forms a σ-algebra, known as the Borel algebra or Borel σ-algebra. <span>The Borel algebra on X is the smallest σ-algebra containing all open sets (or, equivalently, all closed sets). Borel sets are important in measure theory, since any measure defined on the open sets of a space, or on the closed sets of a space, must also be

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

The Borel algebra on X is the smallest σ-algebra containing all open sets

of countable union, countable intersection, and relative complement. Borel sets are named after Émile Borel. For a topological space X, the collection of all Borel sets on X forms a σ-algebra, known as the Borel algebra or Borel σ-algebra. <span>The Borel algebra on X is the smallest σ-algebra containing all open sets (or, equivalently, all closed sets). Borel sets are important in measure theory, since any measure defined on the open sets of a space, or on the closed sets of a space, must also be

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

The Borel algebra on X is the smallest σ-algebra containing all open sets

of countable union, countable intersection, and relative complement. Borel sets are named after Émile Borel. For a topological space X, the collection of all Borel sets on X forms a σ-algebra, known as the Borel algebra or Borel σ-algebra. <span>The Borel algebra on X is the smallest σ-algebra containing all open sets (or, equivalently, all closed sets). Borel sets are important in measure theory, since any measure defined on the open sets of a space, or on the closed sets of a space, must also be

status | not read | reprioritisations | ||
---|---|---|---|---|

last reprioritisation on | reading queue position [%] | |||

started reading on | finished reading on |

or a topological space X, the collection of all Borel sets on X forms a σ-algebra, known as the Borel algebra or Borel σ-algebra. The Borel algebra on X is the smallest σ-algebra containing all open sets (or, equivalently, all closed sets). <span>Borel sets are important in measure theory, since any measure defined on the open sets of a space, or on the closed sets of a space, must also be defined on all Borel sets of that space. Any measure defined on the Borel sets is called a Borel measure. Borel sets and the associated Borel hierarchy also play a fundamental role in descriptive set theory. In some contexts

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

Borel sets are important in measure theory, since any measure defined on the open sets of a space, or on the closed sets of a space, must also be defined on all Borel sets of that space.

or a topological space X, the collection of all Borel sets on X forms a σ-algebra, known as the Borel algebra or Borel σ-algebra. The Borel algebra on X is the smallest σ-algebra containing all open sets (or, equivalently, all closed sets). <span>Borel sets are important in measure theory, since any measure defined on the open sets of a space, or on the closed sets of a space, must also be defined on all Borel sets of that space. Any measure defined on the Borel sets is called a Borel measure. Borel sets and the associated Borel hierarchy also play a fundamental role in descriptive set theory. In some contexts

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

In fact, a "metric" is the generalization of the Euclidean metric arising from the four long-known properties of the Euclidean distance.

her, are called a metric on the set. A metric on a space induces topological properties like open and closed sets, which lead to the study of more abstract topological spaces. The most familiar metric space is 3-dimensional Euclidean space. <span>In fact, a "metric" is the generalization of the Euclidean metric arising from the four long-known properties of the Euclidean distance. The Euclidean metric defines the distance between two points as the length of the straight line segment connecting them. Other metric spaces occur for example in elliptic geometry and h

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

A complement of an open set (relative to the space that the topology is defined on) is called a closed set.

l space. There are, however, topological spaces that are not metric spaces. Properties[edit] The union of any number of open sets, or infinitely many open sets, is open. [2] The intersection of a finite number of open sets is open. [2] <span>A complement of an open set (relative to the space that the topology is defined on) is called a closed set. A set may be both open and closed (a clopen set). The empty set and the full space are examples of sets that are both open and closed. [3] Uses[edit] Open sets have a fundamental im

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

A complement of an open set (relative to the space that the topology is defined on) is called a closed set.

l space. There are, however, topological spaces that are not metric spaces. Properties[edit] The union of any number of open sets, or infinitely many open sets, is open. [2] The intersection of a finite number of open sets is open. [2] <span>A complement of an open set (relative to the space that the topology is defined on) is called a closed set. A set may be both open and closed (a clopen set). The empty set and the full space are examples of sets that are both open and closed. [3] Uses[edit] Open sets have a fundamental im

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

At the stationary point the vector ∇f(x) is orthogonal to the constraint surface because otherwise we could increase the value of f(x) by moving a short distance along the constraint surface

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

the weak formulation of the necessary condition of extremum is an integral with an arbitrary function δf .

pedia Jump to: navigation, search In mathematics, specifically in the calculus of variations, a variation δf of a function f can be concentrated on an arbitrarily small interval, but not a single point. <span>Accordingly, the necessary condition of extremum (functional derivative equal zero) appears in a weak formulation (variational form) integrated with an arbitrary function δf. The fundamental lemma of the calculus of variations is typically used to transform this weak formulation into the strong formulation (differential equation), free of the integration with arbitrary function. The proof usually exploits the possibility to choose δf concentrated on an interval on which f keeps sign (positive or negative). Several versions of the lemma are in use. Basic version

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

In functional analysis and related areas of mathematics, a sequence space is a vector space whose elements are infinite sequences of real or complex numbers

a, the free encyclopedia Jump to: navigation, search For usage in evolutionary biology, see Sequence space (evolution). For mathematical operations on sequence numbers, see Serial number arithmetic. <span>In functional analysis and related areas of mathematics, a sequence space is a vector space whose elements are infinite sequences of real or complex numbers. Equivalently, it is a function space whose elements are functions from the natural numbers to the field K of real or complex numbers. The set of all such functions is naturally identif

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

In functional analysis and related areas of mathematics, a sequence space is a vector space whose elements are infinite sequences of real or complex numbers

a, the free encyclopedia Jump to: navigation, search For usage in evolutionary biology, see Sequence space (evolution). For mathematical operations on sequence numbers, see Serial number arithmetic. <span>In functional analysis and related areas of mathematics, a sequence space is a vector space whose elements are infinite sequences of real or complex numbers. Equivalently, it is a function space whose elements are functions from the natural numbers to the field K of real or complex numbers. The set of all such functions is naturally identif

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

The total derivative of a function of several variables, e.g., , , , with respect to an exogenous argument , is the limiting ratio of the change in the function's value to the change in the exogenous argument's value, taking into account the exogenous argument's direct effect as well as indirect effects via the other arguments of the function.

integral Line integral Surface integral Volume integral Jacobian Hessian Specialized[show] Fractional Malliavin Stochastic Variations Glossary of calculus[show] Glossary of calculus v t e <span>In the mathematical field of differential calculus, a total derivative or full derivative of a function f {\displaystyle f} of several variables, e.g., t {\displaystyle t} , x {\displaystyle x} , y {\displaystyle y} , etc., with respect to an exogenous argument, e.g., t {\displaystyle t} , is the limiting ratio of the change in the function's value to the change in the exogenous argument's value (for arbitrarily small changes), taking into account the exogenous argument's direct effect as well as indirect effects via the other arguments of the function. The total derivative of a function is different from its corresponding partial derivative ( ∂ {\displaystyle \partial } ). Calculation of the

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

a function of several variables, e.g., , , , with respect to an exogenous argument , is the limiting ratio of the change in the function's value to the change in the exogenous argument's value, taking into account the exogenous argument's <span>direct effect as well as indirect effects via the other arguments of the function. <span><body><html>

integral Line integral Surface integral Volume integral Jacobian Hessian Specialized[show] Fractional Malliavin Stochastic Variations Glossary of calculus[show] Glossary of calculus v t e <span>In the mathematical field of differential calculus, a total derivative or full derivative of a function f {\displaystyle f} of several variables, e.g., t {\displaystyle t} , x {\displaystyle x} , y {\displaystyle y} , etc., with respect to an exogenous argument, e.g., t {\displaystyle t} , is the limiting ratio of the change in the function's value to the change in the exogenous argument's value (for arbitrarily small changes), taking into account the exogenous argument's direct effect as well as indirect effects via the other arguments of the function. The total derivative of a function is different from its corresponding partial derivative ( ∂ {\displaystyle \partial } ). Calculation of the

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

derivative defined by limit considers the behavior of f for all small values of h and extracts a consistent value for the case when h equals zero

e behavior of the function at the point a because it does not account for what happens between a and a + h. It is not possible to discover the behavior at a by setting h to zero because this would require dividing by zero, which is undefined. <span>The derivative is defined by taking the limit as h tends to zero, meaning that it considers the behavior of f for all small values of h and extracts a consistent value for the case when h equals zero: lim h → 0 f ( a + h ) − f ( a ) h . {\displaystyle \lim _{h\to 0}{f(a+h)-f(a) \over {h}}.} Geometrically, the derivative is the slope of the tangent line to the graph of f at a. The tangent line is a limit of secant lines just as the derivative is a limit of difference

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

you should always try to make sure your brain works in the exactly same way at each repetition .

he set of countries that can be listed in any order. Paradoxically, despite containing more information, enumerations are easier to remember. The reason for this has been discussed earlier in the context of the minimum information principle: <span>you should always try to make sure your brain works in the exactly same way at each repetition . In the case of sets, listing members in varying order at each repetition has a disastrous effect on memory. It is nearly impossible to memorize sets containing more than five members wi

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

wording must be optimized to make sure that the brain can recall it with minimum effort.

apt but I will never know which is which!") in SuperMemo use View : Other browsers : Leeches (Shift+F3) to regularly review and eliminate most difficult items read more: Memory interference Optimize wording <span>The wording of your items must be optimized to make sure that in minimum time the right bulb in your brain lights up. This will reduce error rates, increase specificity, reduce response time, and help your concentration. Less optimum item: cloze deletion that is too wordy Q:

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

A complement of an open set (relative to the space that the topology is defined on) is called a closed set.

l space. There are, however, topological spaces that are not metric spaces. Properties[edit] The union of any number of open sets, or infinitely many open sets, is open. [2] The intersection of a finite number of open sets is open. [2] <span>A complement of an open set (relative to the space that the topology is defined on) is called a closed set. A set may be both open and closed (a clopen set). The empty set and the full space are examples of sets that are both open and closed. [3] Uses[edit] Open sets have a fundamental im

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

derivative defined by limit considers the behavior of f for all small values of h and extracts a consistent value for the case when h equals zero

e behavior of the function at the point a because it does not account for what happens between a and a + h. It is not possible to discover the behavior at a by setting h to zero because this would require dividing by zero, which is undefined. <span>The derivative is defined by taking the limit as h tends to zero, meaning that it considers the behavior of f for all small values of h and extracts a consistent value for the case when h equals zero: lim h → 0 f ( a + h ) − f ( a ) h . {\displaystyle \lim _{h\to 0}{f(a+h)-f(a) \over {h}}.} Geometrically, the derivative is the slope of the tangent line to the graph of f at a. The tangent line is a limit of secant lines just as the derivative is a limit of difference

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

ture wasn’t the only cause for the demise of scholastic logic, however. Scholastic logic was also viewed – rightly or wrongly – as being tied to broadly Aristotelian conceptions of language and metaphysics, which themselves fell out of favour <span>in the dawn of the modern era with the rise of a new scientific paradigm. <span><body><html>

s Diafoirus resorts to disputational vocabulary to make a point about love: Distinguo, Mademoiselle; in all that does not concern the possession of the loved one, concedo, I grant it; but in what does regard that possession, nego, I deny it. <span>The fall of disputational culture wasn’t the only cause for the demise of scholastic logic, however. Scholastic logic was also viewed – rightly or wrongly – as being tied to broadly Aristotelian conceptions of language and metaphysics, which themselves fell out of favour in the dawn of the modern era with the rise of a new scientific paradigm. Despite all this, disputations continued to be practised in certain university contexts for some time – indeed, they live on in the ceremonial character of PhD defences. The point, thou

status | not read | reprioritisations | ||
---|---|---|---|---|

last reprioritisation on | reading queue position [%] | |||

started reading on | finished reading on |

羽绒服脏了怎么洗？8招教你轻松搞定！ - 博海拾贝 - 萝卜网 博海拾贝 关于 联系 每日博海拾贝 萝卜网关闭公告 订阅 微博 腾讯微博 微信 诸暨 | 最优购| 烧饼博客 羽绒服脏了怎么洗？8招教你轻松搞定！ 梁萧 发布于 2小时前 分类：文摘 寒冬即将结束，厚重的羽绒服也该清洗干净收起来了，如何清洗？戳图↓↓，学会这8招，教你轻松清洁羽绒服，洁净舒适如新！ 未经允许不得转载：博海拾贝 » 羽绒服脏了怎么洗？8招教你轻松搞定！ 标签：洗羽绒服 相关推荐 [imagelink]除了硬给钱，软银还喜欢用什么方式来投资它看中的公司？ [imagelink]图书馆艳遇 [imagelink]保卫龙脉大作战 [imagelink]一口气印度史（1） [imagelink]我家25万的装修，什么水平？ [imagelink]那本杨国强想烧掉的书，到底写了什么？ [imagel

status | not read | reprioritisations | ||
---|---|---|---|---|

last reprioritisation on | reading queue position [%] | |||

started reading on | finished reading on |

[imagelink] Atrocity propaganda From Wikipedia, the free encyclopedia Jump to: navigation, search <span>Atrocity propaganda is the spreading information about the crimes committed by an enemy, especially deliberate fabrications or exaggerations. [citation needed] It is a form of psychological warfare. [citation needed] The inherently violent nature of war means that exaggeration and invention of atrocities often becomes the

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

Atrocity propaganda is the spreading information about the crimes committed by an enemy, especially deliberate fabrications or exaggerations.

[imagelink] Atrocity propaganda From Wikipedia, the free encyclopedia Jump to: navigation, search <span>Atrocity propaganda is the spreading information about the crimes committed by an enemy, especially deliberate fabrications or exaggerations. [citation needed] It is a form of psychological warfare. [citation needed] The inherently violent nature of war means that exaggeration and invention of atrocities often becomes the

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

Atrocity propaganda is the spreading information about the crimes committed by an enemy, especially deliberate fabrications or exaggerations.

[imagelink] Atrocity propaganda From Wikipedia, the free encyclopedia Jump to: navigation, search <span>Atrocity propaganda is the spreading information about the crimes committed by an enemy, especially deliberate fabrications or exaggerations. [citation needed] It is a form of psychological warfare. [citation needed] The inherently violent nature of war means that exaggeration and invention of atrocities often becomes the

status | not read | reprioritisations | ||
---|---|---|---|---|

last reprioritisation on | reading queue position [%] | |||

started reading on | finished reading on |

Era Elizabethan era Jacobean era Movement English Renaissance Spouse(s) Anne Hathaway ( m. 1582) Children Susanna Hall Hamnet Shakespeare Judith Quiney Parent(s) John Shakespeare Mary Arden Signature [imagelink] <span>William Shakespeare (/ˈʃeɪkspɪər/; 26 April 1564 (baptised) – 23 April 1616) [a] was an English poet, playwright and actor, widely regarded as the greatest writer in the English language and the world's pre-eminent dramatist. [2] [3] [4] He is often called England's national poet and the "Bard of Avon". [5] [b] His extant works, including collaborations, consist of approximately 39 plays, [c] 15

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

William Shakespeare ( / ˈ ʃ eɪ k s p ɪər / ; 26 April 1564 (baptised) – 23 April 1616) [a] was an English poet, playwright and actor, widely regarded as the greatest writer in the English language and the world's pre-eminent dramatist.

Era Elizabethan era Jacobean era Movement English Renaissance Spouse(s) Anne Hathaway ( m. 1582) Children Susanna Hall Hamnet Shakespeare Judith Quiney Parent(s) John Shakespeare Mary Arden Signature [imagelink] <span>William Shakespeare (/ˈʃeɪkspɪər/; 26 April 1564 (baptised) – 23 April 1616) [a] was an English poet, playwright and actor, widely regarded as the greatest writer in the English language and the world's pre-eminent dramatist. [2] [3] [4] He is often called England's national poet and the "Bard of Avon". [5] [b] His extant works, including collaborations, consist of approximately 39 plays, [c] 15

status | not read | reprioritisations | ||
---|---|---|---|---|

last reprioritisation on | reading queue position [%] | |||

started reading on | finished reading on |

Anglo-French wars 1202–04 1213–14 1215–17 1242–43 1294–1303 1337–1453 (1337–60, 1369–89, 1415–53) 1496-98 1512–14 1522–26 1542–46 1557–59 1627–29 1666–67 1689–97 1702–13 1744–48 1744–1763 1754–63 1778–83 1793–1802 1803–14 1815 <span>The Hundred Years' War was a series of conflicts waged from 1337 to 1453 by the House of Plantagenet, rulers of the Kingdom of England, against the House of Valois, rulers of the Kingdom of France, over the succession to the French throne. Each side drew many allies into the war. It was one of the most notable conflicts of the Middle Ages, in which five generations of kings from two rival dynasties fought for the throne o

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

The Hundred Years' War was a series of conflicts waged from 1337 to 1453 by the House of Plantagenet, rulers of the Kingdom of England, against the House of Valois, rulers of the Kingdom of France, over the succession to the French throne. </

Anglo-French wars 1202–04 1213–14 1215–17 1242–43 1294–1303 1337–1453 (1337–60, 1369–89, 1415–53) 1496-98 1512–14 1522–26 1542–46 1557–59 1627–29 1666–67 1689–97 1702–13 1744–48 1744–1763 1754–63 1778–83 1793–1802 1803–14 1815 <span>The Hundred Years' War was a series of conflicts waged from 1337 to 1453 by the House of Plantagenet, rulers of the Kingdom of England, against the House of Valois, rulers of the Kingdom of France, over the succession to the French throne. Each side drew many allies into the war. It was one of the most notable conflicts of the Middle Ages, in which five generations of kings from two rival dynasties fought for the throne o

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

The Hundred Years' War was a series of conflicts waged from 1337 to 1453 by the House of Plantagenet, rulers of the Kingdom of England, against the House of Valois, rulers of the Kingdom of France, over the succession to the French throne. </b

Anglo-French wars 1202–04 1213–14 1215–17 1242–43 1294–1303 1337–1453 (1337–60, 1369–89, 1415–53) 1496-98 1512–14 1522–26 1542–46 1557–59 1627–29 1666–67 1689–97 1702–13 1744–48 1744–1763 1754–63 1778–83 1793–1802 1803–14 1815 <span>The Hundred Years' War was a series of conflicts waged from 1337 to 1453 by the House of Plantagenet, rulers of the Kingdom of England, against the House of Valois, rulers of the Kingdom of France, over the succession to the French throne. Each side drew many allies into the war. It was one of the most notable conflicts of the Middle Ages, in which five generations of kings from two rival dynasties fought for the throne o

status | not read | reprioritisations | ||
---|---|---|---|---|

last reprioritisation on | reading queue position [%] | |||

started reading on | finished reading on |

span>Lingua franca - Wikipedia Lingua franca From Wikipedia, the free encyclopedia Jump to: navigation, search For other uses, see Lingua franca (disambiguation). A lingua franca (/ˌlɪŋɡwə ˈfræŋkə/; lit. Frankish tongue), [1] also known as a bridge language, common language, trade language or vehicular language, is a language or dialect systematically used to make communication possible between people who do not share a native language or dialect, particularly when it is a third language that is distinct from both native languages. [2] Lingua francas have developed around the world throughout human history, sometimes for commercial reasons (so-called "trade languages") but also for cultural, religious, dip

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

A lingua franca ( / ˌ l ɪ ŋ ɡ w ə ˈ f r æ ŋ k ə / ; lit. Frankish tongue ), [1] also known as a bridge language, common language, trade language or vehicular language, is a language or dialect system

span>Lingua franca - Wikipedia Lingua franca From Wikipedia, the free encyclopedia Jump to: navigation, search For other uses, see Lingua franca (disambiguation). A lingua franca (/ˌlɪŋɡwə ˈfræŋkə/; lit. Frankish tongue), [1] also known as a bridge language, common language, trade language or vehicular language, is a language or dialect systematically used to make communication possible between people who do not share a native language or dialect, particularly when it is a third language that is distinct from both native languages. [2] Lingua francas have developed around the world throughout human history, sometimes for commercial reasons (so-called "trade languages") but also for cultural, religious, dip

status | not read | reprioritisations | ||
---|---|---|---|---|

last reprioritisation on | reading queue position [%] | |||

started reading on | finished reading on |

status | not read | reprioritisations | ||
---|---|---|---|---|

last reprioritisation on | reading queue position [%] | |||

started reading on | finished reading on |

ated topics[show] Aristocracy Autocracy Crowned republic Conservatism Thomas Hobbes Legitimists Oligarchy Philosopher king Primogeniture Royalism Regicide Regnal number Royal family Ultra-royalist Politics portal v t e <span>Enlightened absolutism refers to the conduct and policies of European absolute monarchs during the 18th and 19th centuries who were influenced by the ideas of the Enlightenment. Contents [hide] 1 History 2 Political reforms 3 Major nations 4 Associated rulers 5 Chinese Legalism 6 See also 7 References 8 Further reading History[edit source] En

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

Enlightened absolutism refers to the conduct and policies of European absolute monarchs during the 18th and 19th centuries who were influenced by the ideas of the Enlightenment.

ated topics[show] Aristocracy Autocracy Crowned republic Conservatism Thomas Hobbes Legitimists Oligarchy Philosopher king Primogeniture Royalism Regicide Regnal number Royal family Ultra-royalist Politics portal v t e <span>Enlightened absolutism refers to the conduct and policies of European absolute monarchs during the 18th and 19th centuries who were influenced by the ideas of the Enlightenment. Contents [hide] 1 History 2 Political reforms 3 Major nations 4 Associated rulers 5 Chinese Legalism 6 See also 7 References 8 Further reading History[edit source] En

status | not read | reprioritisations | ||
---|---|---|---|---|

last reprioritisation on | reading queue position [%] | |||

started reading on | finished reading on |

status | not read | reprioritisations | ||
---|---|---|---|---|

last reprioritisation on | reading queue position [%] | |||

started reading on | finished reading on |

y his biological son, Commodus. [imagelink] Antoninus Pius [imagelink] Marcus Aurelius [imagelink] Lucius Verus [imagelink] Commodus Five Good Emperors[edit source] <span>The rulers commonly known as the "Five Good Emperors" were Nerva, Trajan, Hadrian, Antoninus Pius and Marcus Aurelius. [4] The term was coined based on what the political philosopher Niccolò Machiavelli said in 1503: From the study of this history we may also learn how a good government is to be established; for while all the emperors who succeeded to the throne by birth, except Titus, were bad,

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

ad><head> The rulers commonly known as the "Five Good Emperors" were Nerva, Trajan, Hadrian, Antoninus Pius and Marcus Aurelius. [4] The term was coined based on what the political philosopher Niccolò Machiavelli said in 1503: <html>

y his biological son, Commodus. [imagelink] Antoninus Pius [imagelink] Marcus Aurelius [imagelink] Lucius Verus [imagelink] Commodus Five Good Emperors[edit source] <span>The rulers commonly known as the "Five Good Emperors" were Nerva, Trajan, Hadrian, Antoninus Pius and Marcus Aurelius. [4] The term was coined based on what the political philosopher Niccolò Machiavelli said in 1503: From the study of this history we may also learn how a good government is to be established; for while all the emperors who succeeded to the throne by birth, except Titus, were bad,

status | not read | reprioritisations | ||
---|---|---|---|---|

last reprioritisation on | reading queue position [%] | |||

started reading on | finished reading on |

Roman law Ius Imperium Mos maiorum Collegiality Auctoritas Roman citizenship Cursus honorum Senatus consultum Senatus consultum ultimum Assemblies Centuriate Curiate Plebeian Tribal Other countries Atlas v t e <span>The Roman Kingdom, or regal period, was the period of the ancient Roman civilization characterized by a monarchical form of government of the city of Rome and its territories. Little is certain about the history of the kingdom, as nearly no written records from that time survive, and the histories about it that were written during the Republic and Empire ar

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

The Roman Kingdom, or regal period, was the period of the ancient Roman civilization characterized by a monarchical form of government of the city of Rome and its territories. </h

Roman law Ius Imperium Mos maiorum Collegiality Auctoritas Roman citizenship Cursus honorum Senatus consultum Senatus consultum ultimum Assemblies Centuriate Curiate Plebeian Tribal Other countries Atlas v t e <span>The Roman Kingdom, or regal period, was the period of the ancient Roman civilization characterized by a monarchical form of government of the city of Rome and its territories. Little is certain about the history of the kingdom, as nearly no written records from that time survive, and the histories about it that were written during the Republic and Empire ar

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

The Weimar Republic (German: Weimarer Republik [ˈvaɪmaʁɐ ʁepuˈbliːk] ( [imagelink] listen ) ) is an unofficial, historical designation for the German state as it existed between 1919 and 1933.

status | not read | reprioritisations | ||
---|---|---|---|---|

last reprioritisation on | reading queue position [%] | |||

started reading on | finished reading on |

art of a series on Ancient Rome and the fall of the Republic Mark Antony Cleopatra VII Assassination of Julius Caesar Pompey Theatre of Pompey Cicero First Triumvirate Roman Forum Comitium Rostra Curia Julia Curia Hostilia v t e <span>The Roman Republic (Latin: Res publica Romana; Classical Latin: [ˈreːs ˈpuːb.lɪ.ka roːˈmaː.na]) was the era of ancient Roman civilization beginning with the overthrow of the Roman Kingdom, traditionally dated to 509 BC, and ending in 27 BC with the establishment of the Roman Empire. It was during this period that Rome's control expanded from the city's immediate surroundings to hegemony over the entire Mediterranean world. Roman government was headed by two consu

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

> The Roman Republic (Latin: Res publica Romana ; Classical Latin: [ˈreːs ˈpuːb.lɪ.ka roːˈmaː.na] ) was the era of ancient Roman civilization beginning with the overthrow of the Roman Kingdom, traditionally dated to 509 BC, and ending in 27 BC with the establishment of the Roman Empire. <span><body><html>

art of a series on Ancient Rome and the fall of the Republic Mark Antony Cleopatra VII Assassination of Julius Caesar Pompey Theatre of Pompey Cicero First Triumvirate Roman Forum Comitium Rostra Curia Julia Curia Hostilia v t e <span>The Roman Republic (Latin: Res publica Romana; Classical Latin: [ˈreːs ˈpuːb.lɪ.ka roːˈmaː.na]) was the era of ancient Roman civilization beginning with the overthrow of the Roman Kingdom, traditionally dated to 509 BC, and ending in 27 BC with the establishment of the Roman Empire. It was during this period that Rome's control expanded from the city's immediate surroundings to hegemony over the entire Mediterranean world. Roman government was headed by two consu

status | not read | reprioritisations | ||
---|---|---|---|---|

last reprioritisation on | reading queue position [%] | |||

started reading on | finished reading on |

perpetual dictator and then assassinated in 44 BC. Civil wars and executions continued, culminating in the victory of Octavian, Caesar's adopted son, over Mark Antony and Cleopatra at the Battle of Actium in 31 BC and the annexation of Egypt. <span>Octavian's power was then unassailable and in 27 BC the Roman Senate formally granted him overarching power and the new title Augustus, effectively marking the end of the Roman Republic. The imperial period of Rome lasted approximately 1,500 years compared to the 500 years of the Republican era. The first two centuries of the empire's existence were a period of unprec

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

Octavian's power was then unassailable and in 27 BC the Roman Senate formally granted him overarching power and the new title Augustus, effectively marking the end of the Roman Republic.

perpetual dictator and then assassinated in 44 BC. Civil wars and executions continued, culminating in the victory of Octavian, Caesar's adopted son, over Mark Antony and Cleopatra at the Battle of Actium in 31 BC and the annexation of Egypt. <span>Octavian's power was then unassailable and in 27 BC the Roman Senate formally granted him overarching power and the new title Augustus, effectively marking the end of the Roman Republic. The imperial period of Rome lasted approximately 1,500 years compared to the 500 years of the Republican era. The first two centuries of the empire's existence were a period of unprec

status | not read | reprioritisations | ||
---|---|---|---|---|

last reprioritisation on | reading queue position [%] | |||

started reading on | finished reading on |

status | not read | reprioritisations | ||
---|---|---|---|---|

last reprioritisation on | reading queue position [%] | |||

started reading on | finished reading on |

status | not read | reprioritisations | ||
---|---|---|---|---|

last reprioritisation on | reading queue position [%] | |||

started reading on | finished reading on |

status | not read | reprioritisations | ||
---|---|---|---|---|

last reprioritisation on | reading queue position [%] | |||

started reading on | finished reading on |

status | not read | reprioritisations | ||
---|---|---|---|---|

last reprioritisation on | reading queue position [%] | |||

started reading on | finished reading on |

status | not read | reprioritisations | ||
---|---|---|---|---|

last reprioritisation on | reading queue position [%] | |||

started reading on | finished reading on |

status | not read | reprioritisations | ||
---|---|---|---|---|

last reprioritisation on | reading queue position [%] | |||

started reading on | finished reading on |

status | not read | reprioritisations | ||
---|---|---|---|---|

last reprioritisation on | reading queue position [%] | |||

started reading on | finished reading on |

status | not read | reprioritisations | ||
---|---|---|---|---|

last reprioritisation on | reading queue position [%] | |||

started reading on | finished reading on |

status | not read | reprioritisations | ||
---|---|---|---|---|

last reprioritisation on | reading queue position [%] | |||

started reading on | finished reading on |

status | not read | reprioritisations | ||
---|---|---|---|---|

last reprioritisation on | reading queue position [%] | |||

started reading on | finished reading on |

status | not read | reprioritisations | ||
---|---|---|---|---|

last reprioritisation on | reading queue position [%] | |||

started reading on | finished reading on |

status | not read | reprioritisations | ||
---|---|---|---|---|

last reprioritisation on | reading queue position [%] | |||

started reading on | finished reading on |

status | not read | reprioritisations | ||
---|---|---|---|---|

last reprioritisation on | reading queue position [%] | |||

started reading on | finished reading on |

status | not read | reprioritisations | ||
---|---|---|---|---|

last reprioritisation on | reading queue position [%] | |||

started reading on | finished reading on |

status | not read | reprioritisations | ||
---|---|---|---|---|

last reprioritisation on | reading queue position [%] | |||

started reading on | finished reading on |

status | not read | reprioritisations | ||
---|---|---|---|---|

last reprioritisation on | reading queue position [%] | |||

started reading on | finished reading on |

status | not read | reprioritisations | ||
---|---|---|---|---|

last reprioritisation on | reading queue position [%] | |||

started reading on | finished reading on |

status | not read | reprioritisations | ||
---|---|---|---|---|

last reprioritisation on | reading queue position [%] | |||

started reading on | finished reading on |

status | not read | reprioritisations | ||
---|---|---|---|---|

last reprioritisation on | reading queue position [%] | |||

started reading on | finished reading on |

status | not read | reprioritisations | ||
---|---|---|---|---|

last reprioritisation on | reading queue position [%] | |||

started reading on | finished reading on |

status | not read | reprioritisations | ||
---|---|---|---|---|

last reprioritisation on | reading queue position [%] | |||

started reading on | finished reading on |

status | not read | reprioritisations | ||
---|---|---|---|---|

last reprioritisation on | reading queue position [%] | |||

started reading on | finished reading on |

status | not read | reprioritisations | ||
---|---|---|---|---|

last reprioritisation on | reading queue position [%] | |||

started reading on | finished reading on |

status | not read | reprioritisations | ||
---|---|---|---|---|

last reprioritisation on | reading queue position [%] | |||

started reading on | finished reading on |

status | not read | reprioritisations | ||
---|---|---|---|---|

last reprioritisation on | reading queue position [%] | |||

started reading on | finished reading on |

status | not read | reprioritisations | ||
---|---|---|---|---|

last reprioritisation on | reading queue position [%] | |||

started reading on | finished reading on |

status | not read | reprioritisations | ||
---|---|---|---|---|

last reprioritisation on | reading queue position [%] | |||

started reading on | finished reading on |

status | not read | reprioritisations | ||
---|---|---|---|---|

last reprioritisation on | reading queue position [%] | |||

started reading on | finished reading on |

status | not read | reprioritisations | ||
---|---|---|---|---|

last reprioritisation on | reading queue position [%] | |||

started reading on | finished reading on |

status | not read | reprioritisations | ||
---|---|---|---|---|

last reprioritisation on | reading queue position [%] | |||

started reading on | finished reading on |

status | not read | reprioritisations | ||
---|---|---|---|---|

last reprioritisation on | reading queue position [%] | |||

started reading on | finished reading on |

status | not read | reprioritisations | ||
---|---|---|---|---|

last reprioritisation on | reading queue position [%] | |||

started reading on | finished reading on |

status | not read | reprioritisations | ||
---|---|---|---|---|

last reprioritisation on | reading queue position [%] | |||

started reading on | finished reading on |

of special-purpose registers. The device controller is responsible for moving the data between the peripheral devices that it controls and its local buffer storage. Typically, operating systems have a device driver for each device controller. <span>This device driver understands the device controller and provides the rest of the operating system with a uniform interface to the device. To start an I/O operation, the device driver loads the appropriate registers within the device controller. The device controller, in turn, examines the contents of these registers to d