Do you want BuboFlash to help you learning these things? Click here to log in or create user.

Tags

#gaussian-process

Question

Periodicity maps the input *x* to a two dimensional vector [...]

Answer

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

Periodicity refers to inducing periodic patterns within the behaviour of the process. Formally, this is achieved by mapping the input x to a two dimensional vector u(x) = (cos(x), sin(x)).

en we might choose a rougher covariance function. Extreme examples of the behaviour is the Ornstein–Uhlenbeck covariance function and the squared exponential where the former is never differentiable and the latter infinitely differentiable. <span>Periodicity refers to inducing periodic patterns within the behaviour of the process. Formally, this is achieved by mapping the input x to a two dimensional vector u(x) = (cos(x), sin(x)). Usual covariance functions[edit source] [imagelink] The effect of choosing different kernels on the prior function distribution of the Gaussian process. Left is a squared expon

Tags

#gaussian-process

Question

Answer

the observer

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

A process that is concurrently stationary and isotropic is considered to be homogeneous; [7] in practice these properties reflect the differences (or rather the lack of them) in the behaviour of the process given the location of <span>the observer. <span><body><html>

stationary, it depends on their separation, x − x', while if non-stationary it depends on the actual position of the points x and x'. For example, the special case of an Ornstein–Uhlenbeck process, a Brownian motion process, is stationary. <span>If the process depends only on |x − x'|, the Euclidean distance (not the direction) between x and x', then the process is considered isotropic. A process that is concurrently stationary and isotropic is considered to be homogeneous; [7] in practice these properties reflect the differences (or rather the lack of them) in the behaviour of the process given the location of the observer. Ultimately Gaussian processes translate as taking priors on functions and the smoothness of these priors can be induced by the covariance function. [5] If we expect that for "ne

Tags

#multivariate-normal-distribution

Question

If **Y** = **c** + **BX** is an affine transformation,

then**Y** has a multivariate normal distribution with expected value **[...]**

then

Answer

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

If Y = c + BX is an affine transformation of where c is an vector of constants and B is a constant matrix, then Y has a multivariate normal distribution with expected value c + Bμ and variance BΣB T . Corollaries: sums of Gaussian are Gaussian, marginals of Gaussian are Gaussian.

{\displaystyle {\boldsymbol {\Sigma }}'={\begin{bmatrix}{\boldsymbol {\Sigma }}_{11}&{\boldsymbol {\Sigma }}_{13}\\{\boldsymbol {\Sigma }}_{31}&{\boldsymbol {\Sigma }}_{33}\end{bmatrix}}} . Affine transformation[edit source] <span>If Y = c + BX is an affine transformation of X ∼ N ( μ , Σ ) , {\displaystyle \mathbf {X} \ \sim {\mathcal {N}}({\boldsymbol {\mu }},{\boldsymbol {\Sigma }}),} where c is an M × 1 {\displaystyle M\times 1} vector of constants and B is a constant M × N {\displaystyle M\times N} matrix, then Y has a multivariate normal distribution with expected value c + Bμ and variance BΣB T i.e., Y ∼ N ( c + B μ , B Σ B T ) {\displaystyle \mathbf {Y} \sim {\mathcal {N}}\left(\mathbf {c} +\mathbf {B} {\boldsymbol {\mu }},\mathbf {B} {\boldsymbol {\Sigma }}\mathbf {B} ^{\rm {T}}\right)} . In particular, any subset of the X i has a marginal distribution that is also multivariate normal. To see this, consider the following example: to extract the subset (X 1 , X 2 , X 4 )

Tags

#probability

Question

The negative binomial distribution also arises as a [...] of Poisson distributions

Answer

continuous mixture

*Can be used to model over dispersed count observations, known as Gamma-Poisson distribution.*

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

The negative binomial distribution also arises as a continuous mixture of Poisson distributions (i.e. a compound probability distribution) where the mixing distribution of the Poisson rate is a gamma distribution.

) . {\displaystyle \operatorname {Poisson} (\lambda )=\lim _{r\to \infty }\operatorname {NB} \left(r,{\frac {\lambda }{\lambda +r}}\right).} Gamma–Poisson mixture[edit source] <span>The negative binomial distribution also arises as a continuous mixture of Poisson distributions (i.e. a compound probability distribution) where the mixing distribution of the Poisson rate is a gamma distribution. That is, we can view the negative binomial as a Poisson(λ) distribution, where λ is itself a random variable, distributed as a gamma distribution with shape = r and scale θ = p/(1 − p) or correspondingly rate β = (1 − p)/p. To display the intuition behind this statement, consider two independent Poisson processes, “Success” and “Failure”, with intensities p and 1 − p. Together, the Success and Failure pr

#linear-algebra #matrix-decomposition

In linear algebra, the **Cholesky decomposition** or **Cholesky factorization** is a decomposition of a Hermitian, positive-definite matrix into the product of a lower triangular matrix and its conjugate transpose, which is useful e.g. for efficient numerical solutions and Monte Carlo simulations.

status | not read | reprioritisations | ||
---|---|---|---|---|

last reprioritisation on | reading queue position [%] | |||

started reading on | finished reading on |

ikipedia ocultar siempre | ocultar ahora Cholesky decomposition From Wikipedia, the free encyclopedia Jump to: navigation, search <span>In linear algebra, the Cholesky decomposition or Cholesky factorization is a decomposition of a Hermitian, positive-definite matrix into the product of a lower triangular matrix and its conjugate transpose, which is useful e.g. for efficient numerical solutions and Monte Carlo simulations. It was discovered by André-Louis Cholesky for real matrices. When it is applicable, the Cholesky decomposition is roughly twice as efficient as the LU decomposition for solving systems

#linear-algebra #matrix-decomposition

The Cholesky decomposition of a Hermitian positive-definite matrix **A** is a decomposition of the form

where **L** is a lower triangular matrix with real and positive diagonal entries, and **L*** denotes the conjugate transpose of **L**.

Every Hermitian positive-definite matrix (and thus also every real-valued symmetric positive-definite matrix) has a unique Cholesky decomposition.^{[2]} If the matrix **A** is Hermitian and positive semi-definite, then it still has a decomposition of the form **A** = **LL*** if the diagonal entries of **L** are allowed to be zero.^{[3]}

When **A** has real entries, **L** has real entries as well, and the factorization may be written **A** = **LL**^{T}.^{[4]}

The Cholesky decomposition is unique when **A** is positive definite; there is only one lower triangular matrix **L** with strictly positive diagonal entries such that **A** = **LL***. However, the decomposition need not be unique when **A** is positive semidefinite.

The converse holds trivially: if **A** can be written as **LL*** for some invertible **L**, lower triangular or otherwise, then **A** is Hermitian and positive definite.

status | not read | reprioritisations | ||
---|---|---|---|---|

last reprioritisation on | reading queue position [%] | |||

started reading on | finished reading on |

s 7 Generalization 8 Implementations in programming languages 9 See also 10 Notes 11 References 12 External links 12.1 History of science 12.2 Information 12.3 Computer code 12.4 Use of the matrix in simulation 12.5 Online calculators <span>Statement[edit source] The Cholesky decomposition of a Hermitian positive-definite matrix A is a decomposition of the form A = L L ∗ , {\displaystyle \mathbf {A} =\mathbf {LL} ^{*},} where L is a lower triangular matrix with real and positive diagonal entries, and L* denotes the conjugate transpose of L. Every Hermitian positive-definite matrix (and thus also every real-valued symmetric positive-definite matrix) has a unique Cholesky decomposition. [2] If the matrix A is Hermitian and positive semi-definite, then it still has a decomposition of the form A = LL* if the diagonal entries of L are allowed to be zero. [3] When A has real entries, L has real entries as well, and the factorization may be written A = LL T . [4] The Cholesky decomposition is unique when A is positive definite; there is only one lower triangular matrix L with strictly positive diagonal entries such that A = LL*. However, the decomposition need not be unique when A is positive semidefinite. The converse holds trivially: if A can be written as LL* for some invertible L, lower triangular or otherwise, then A is Hermitian and positive definite. LDL decomposition[edit source] A closely related variant of the classical Cholesky decomposition is the LDL decomposition, A =

#linear-algebra #matrix-decomposition

The Cholesky decomposition of a Hermitian positive-definite matrix **A** is a decomposition of the form

where **L** is a lower triangular matrix with real and positive diagonal entries, and **L*** denotes the conjugate transpose of **L**.

status | not read | reprioritisations | ||
---|---|---|---|---|

last reprioritisation on | reading queue position [%] | |||

started reading on | finished reading on |

The Cholesky decomposition of a Hermitian positive-definite matrix A is a decomposition of the form where L is a lower triangular matrix with real and positive diagonal entries, and L* denotes the conjugate transpose of L. Every Hermitian positive-definite matrix (and thus also every real-valued symmetric positive-definite matrix) has a unique Cholesky decomposition. [2] If the matrix A is Her

s 7 Generalization 8 Implementations in programming languages 9 See also 10 Notes 11 References 12 External links 12.1 History of science 12.2 Information 12.3 Computer code 12.4 Use of the matrix in simulation 12.5 Online calculators <span>Statement[edit source] The Cholesky decomposition of a Hermitian positive-definite matrix A is a decomposition of the form A = L L ∗ , {\displaystyle \mathbf {A} =\mathbf {LL} ^{*},} where L is a lower triangular matrix with real and positive diagonal entries, and L* denotes the conjugate transpose of L. Every Hermitian positive-definite matrix (and thus also every real-valued symmetric positive-definite matrix) has a unique Cholesky decomposition. [2] If the matrix A is Hermitian and positive semi-definite, then it still has a decomposition of the form A = LL* if the diagonal entries of L are allowed to be zero. [3] When A has real entries, L has real entries as well, and the factorization may be written A = LL T . [4] The Cholesky decomposition is unique when A is positive definite; there is only one lower triangular matrix L with strictly positive diagonal entries such that A = LL*. However, the decomposition need not be unique when A is positive semidefinite. The converse holds trivially: if A can be written as LL* for some invertible L, lower triangular or otherwise, then A is Hermitian and positive definite. LDL decomposition[edit source] A closely related variant of the classical Cholesky decomposition is the LDL decomposition, A =

Tags

#linear-algebra #matrix-decomposition

Question

The Cholesky decomposition is of the form [...]

Answer

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

The Cholesky decomposition of a Hermitian positive-definite matrix A is a decomposition of the form where L is a lower triangular matrix with real and positive diagonal entries, and L* denotes the conjugate transpose of L.

s 7 Generalization 8 Implementations in programming languages 9 See also 10 Notes 11 References 12 External links 12.1 History of science 12.2 Information 12.3 Computer code 12.4 Use of the matrix in simulation 12.5 Online calculators <span>Statement[edit source] The Cholesky decomposition of a Hermitian positive-definite matrix A is a decomposition of the form A = L L ∗ , {\displaystyle \mathbf {A} =\mathbf {LL} ^{*},} where L is a lower triangular matrix with real and positive diagonal entries, and L* denotes the conjugate transpose of L. Every Hermitian positive-definite matrix (and thus also every real-valued symmetric positive-definite matrix) has a unique Cholesky decomposition. [2] If the matrix A is Hermitian and positive semi-definite, then it still has a decomposition of the form A = LL* if the diagonal entries of L are allowed to be zero. [3] When A has real entries, L has real entries as well, and the factorization may be written A = LL T . [4] The Cholesky decomposition is unique when A is positive definite; there is only one lower triangular matrix L with strictly positive diagonal entries such that A = LL*. However, the decomposition need not be unique when A is positive semidefinite. The converse holds trivially: if A can be written as LL* for some invertible L, lower triangular or otherwise, then A is Hermitian and positive definite. LDL decomposition[edit source] A closely related variant of the classical Cholesky decomposition is the LDL decomposition, A =

Tags

#linear-algebra #matrix-decomposition

Question

In Cholesky decomposition of the form **L** is a [...]

Answer

lower triangular matrix with real and positive diagonal entries

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

The Cholesky decomposition of a Hermitian positive-definite matrix A is a decomposition of the form where L is a lower triangular matrix with real and positive diagonal entries, and L* denotes the conjugate transpose of L.

s 7 Generalization 8 Implementations in programming languages 9 See also 10 Notes 11 References 12 External links 12.1 History of science 12.2 Information 12.3 Computer code 12.4 Use of the matrix in simulation 12.5 Online calculators <span>Statement[edit source] The Cholesky decomposition of a Hermitian positive-definite matrix A is a decomposition of the form A = L L ∗ , {\displaystyle \mathbf {A} =\mathbf {LL} ^{*},} where L is a lower triangular matrix with real and positive diagonal entries, and L* denotes the conjugate transpose of L. Every Hermitian positive-definite matrix (and thus also every real-valued symmetric positive-definite matrix) has a unique Cholesky decomposition. [2] If the matrix A is Hermitian and positive semi-definite, then it still has a decomposition of the form A = LL* if the diagonal entries of L are allowed to be zero. [3] When A has real entries, L has real entries as well, and the factorization may be written A = LL T . [4] The Cholesky decomposition is unique when A is positive definite; there is only one lower triangular matrix L with strictly positive diagonal entries such that A = LL*. However, the decomposition need not be unique when A is positive semidefinite. The converse holds trivially: if A can be written as LL* for some invertible L, lower triangular or otherwise, then A is Hermitian and positive definite. LDL decomposition[edit source] A closely related variant of the classical Cholesky decomposition is the LDL decomposition, A =

Tags

#linear-algebra #matrix-decomposition

Question

Answer

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

In linear algebra, the Cholesky decomposition or Cholesky factorization is a decomposition of a Hermitian, positive-definite matrix into the product of a lower triangular matrix and its conjugate transpose, which is useful e.g. for efficient numerical solutions and Monte Carlo simulations.

ikipedia ocultar siempre | ocultar ahora Cholesky decomposition From Wikipedia, the free encyclopedia Jump to: navigation, search <span>In linear algebra, the Cholesky decomposition or Cholesky factorization is a decomposition of a Hermitian, positive-definite matrix into the product of a lower triangular matrix and its conjugate transpose, which is useful e.g. for efficient numerical solutions and Monte Carlo simulations. It was discovered by André-Louis Cholesky for real matrices. When it is applicable, the Cholesky decomposition is roughly twice as efficient as the LU decomposition for solving systems

Tags

#logic

Question

Descartes claims the chief purpose of scholastic logic is [...]

Answer

justification and exposition

*which makes sense particularly against the background of dialectical practices, where interlocutors explain and debate what they themselves already know.*

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

Descartes hits the nail on the head when he claims that the logic of the Schools (scholastic logic) is not really a logic of discovery. Its chief purpose is justification and exposition , which makes sense particularly against the background of dialectical practices, where interlocutors explain and debate what they themselves already know.

without judgment about things one does not know. Such logic corrupts good sense rather than increasing it. I mean instead the kind of logic which teaches us to direct our reason with a view to discovering the truths of which we are ignorant. <span>Descartes hits the nail on the head when he claims that the logic of the Schools (scholastic logic) is not really a logic of discovery. Its chief purpose is justification and exposition, which makes sense particularly against the background of dialectical practices, where interlocutors explain and debate what they themselves already know. Indeed, for much of the history of logic, both in ancient Greece and in the Latin medieval tradition, ‘dialectic’ and ‘logic’ were taken to be synonymous. Up to Descartes’s time, the ch

#metric-space

status | not read | reprioritisations | ||
---|---|---|---|---|

last reprioritisation on | reading queue position [%] | |||

started reading on | finished reading on |

x ) , T ( y ) ) ≤ q d ( x , y ) {\displaystyle d(T(x),T(y))\leq qd(x,y)} for all x, y in X. <span>Banach Fixed Point Theorem. Let (X, d) be a non-empty complete metric space with a contraction mapping T : X → X. Then T admits a unique fixed-point x* in X (i.e. T(x*) = x*). Furthermore, x* can be found as follows: start with an arbitrary element x 0 in X and define a sequence {x n } by x n = T(x n−1 ), then x n → x*. Remark 1. The following inequalities are equivalent and describe the speed of convergence: d

Tags

#metric-space

Question

When a complete metric space admits a contraction mapping *T* : *X* → *X*. The fixed point for the map can be found as follows: start with *[...]* and define a sequence {*x*_{n}} by *x*_{n} = *T*(*x*_{n−1}), then *x*_{n} → *x** .

Answer

an arbitrary element *x*_{0} in *X*

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

Banach Fixed Point Theorem. Let (X, d) be a non-empty complete metric space with a contraction mapping T : X → X. Then T admits a unique fixed-point x* in X (i.e. T(x*) = x*). Furthermore, x* can be found as follows: start with <span>an arbitrary element x 0 in X and define a sequence {x n } by x n = T(x n−1 ), then x n → x* . <span><body><html>

x ) , T ( y ) ) ≤ q d ( x , y ) {\displaystyle d(T(x),T(y))\leq qd(x,y)} for all x, y in X. <span>Banach Fixed Point Theorem. Let (X, d) be a non-empty complete metric space with a contraction mapping T : X → X. Then T admits a unique fixed-point x* in X (i.e. T(x*) = x*). Furthermore, x* can be found as follows: start with an arbitrary element x 0 in X and define a sequence {x n } by x n = T(x n−1 ), then x n → x*. Remark 1. The following inequalities are equivalent and describe the speed of convergence: d

Tags

#graphical-models

Question

A Markov random field is a model over [...].

Answer

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

A Markov random field, also known as a Markov network, is a model over an undirected graph.

ne learning models like hidden Markov models, neural networks and newer models such as variable-order Markov models can be considered special cases of Bayesian networks. Markov random field[edit source] Main article: Markov random field <span>A Markov random field, also known as a Markov network, is a model over an undirected graph. A graphical model with many repeated subunits can be represented with plate notation. Other types[edit source] A factor graph is an undirected bipartite graph connecting variables a

Tags

#linear-algebra

Question

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

In mathematics, more specifically in abstract algebra and linear algebra, a bilinear form on a vector space V is a bilinear map V × V → K , where K is the field of scalars.

Bilinear form - Wikipedia Bilinear form From Wikipedia, the free encyclopedia Jump to: navigation, search In mathematics, more specifically in abstract algebra and linear algebra, a bilinear form on a vector space V is a bilinear map V × V → K, where K is the field of scalars. In other words, a bilinear form is a function B : V × V → K that is linear in each argument separately: B(u + v, w) = B(u, w) + B(v, w) and B(λu, v) = λB(u, v) B(u, v + w) = B(u, v) + B(u, w) and B(u, λv) = λB(u, v) The definition of a bilinear form can be extended to include modules over a ring, with linear maps replaced by module homomorphisms. When K is the field of complex numbers C, one

Tags

#linear-algebra #matrix-decomposition

Question

The Cholesky decomposition only works properly for **[...]** matrices

Answer

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

The Cholesky decomposition of a Hermitian positive-definite matrix A is a decomposition of the form where L is a lower triangular matrix with real and positive diagonal entries, and L* denotes the conjugate transpose of L. </

s 7 Generalization 8 Implementations in programming languages 9 See also 10 Notes 11 References 12 External links 12.1 History of science 12.2 Information 12.3 Computer code 12.4 Use of the matrix in simulation 12.5 Online calculators <span>Statement[edit source] The Cholesky decomposition of a Hermitian positive-definite matrix A is a decomposition of the form A = L L ∗ , {\displaystyle \mathbf {A} =\mathbf {LL} ^{*},} where L is a lower triangular matrix with real and positive diagonal entries, and L* denotes the conjugate transpose of L. Every Hermitian positive-definite matrix (and thus also every real-valued symmetric positive-definite matrix) has a unique Cholesky decomposition. [2] If the matrix A is Hermitian and positive semi-definite, then it still has a decomposition of the form A = LL* if the diagonal entries of L are allowed to be zero. [3] When A has real entries, L has real entries as well, and the factorization may be written A = LL T . [4] The Cholesky decomposition is unique when A is positive definite; there is only one lower triangular matrix L with strictly positive diagonal entries such that A = LL*. However, the decomposition need not be unique when A is positive semidefinite. The converse holds trivially: if A can be written as LL* for some invertible L, lower triangular or otherwise, then A is Hermitian and positive definite. LDL decomposition[edit source] A closely related variant of the classical Cholesky decomposition is the LDL decomposition, A =

#linear-algebra #matrix-decomposition

The converse holds trivially: if **A** can be written as **LL*** for some invertible **L**, lower triangular or otherwise, then **A** is Hermitian and positive definite.

status | not read | reprioritisations | ||
---|---|---|---|---|

last reprioritisation on | reading queue position [%] | |||

started reading on | finished reading on |

position is unique when A is positive definite; there is only one lower triangular matrix L with strictly positive diagonal entries such that A = LL*. However, the decomposition need not be unique when A is positive semidefinite. <span>The converse holds trivially: if A can be written as LL* for some invertible L, lower triangular or otherwise, then A is Hermitian and positive definite. <span><body><html>

s 7 Generalization 8 Implementations in programming languages 9 See also 10 Notes 11 References 12 External links 12.1 History of science 12.2 Information 12.3 Computer code 12.4 Use of the matrix in simulation 12.5 Online calculators <span>Statement[edit source] The Cholesky decomposition of a Hermitian positive-definite matrix A is a decomposition of the form A = L L ∗ , {\displaystyle \mathbf {A} =\mathbf {LL} ^{*},} where L is a lower triangular matrix with real and positive diagonal entries, and L* denotes the conjugate transpose of L. Every Hermitian positive-definite matrix (and thus also every real-valued symmetric positive-definite matrix) has a unique Cholesky decomposition. [2] If the matrix A is Hermitian and positive semi-definite, then it still has a decomposition of the form A = LL* if the diagonal entries of L are allowed to be zero. [3] When A has real entries, L has real entries as well, and the factorization may be written A = LL T . [4] The Cholesky decomposition is unique when A is positive definite; there is only one lower triangular matrix L with strictly positive diagonal entries such that A = LL*. However, the decomposition need not be unique when A is positive semidefinite. The converse holds trivially: if A can be written as LL* for some invertible L, lower triangular or otherwise, then A is Hermitian and positive definite. LDL decomposition[edit source] A closely related variant of the classical Cholesky decomposition is the LDL decomposition, A =

Tags

#linear-algebra #matrix-decomposition

Question

Cholesky decomposability implies that if **A** can be written as **LL*** for some invertible **L** then **A** is [...]

Answer

Hermitian and positive definite.

*L can be lower triangular or otherwise, *

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

The converse holds trivially: if A can be written as LL* for some invertible L, lower triangular or otherwise, then A is Hermitian and positive definite.

s 7 Generalization 8 Implementations in programming languages 9 See also 10 Notes 11 References 12 External links 12.1 History of science 12.2 Information 12.3 Computer code 12.4 Use of the matrix in simulation 12.5 Online calculators <span>Statement[edit source] The Cholesky decomposition of a Hermitian positive-definite matrix A is a decomposition of the form A = L L ∗ , {\displaystyle \mathbf {A} =\mathbf {LL} ^{*},} where L is a lower triangular matrix with real and positive diagonal entries, and L* denotes the conjugate transpose of L. Every Hermitian positive-definite matrix (and thus also every real-valued symmetric positive-definite matrix) has a unique Cholesky decomposition. [2] If the matrix A is Hermitian and positive semi-definite, then it still has a decomposition of the form A = LL* if the diagonal entries of L are allowed to be zero. [3] When A has real entries, L has real entries as well, and the factorization may be written A = LL T . [4] The Cholesky decomposition is unique when A is positive definite; there is only one lower triangular matrix L with strictly positive diagonal entries such that A = LL*. However, the decomposition need not be unique when A is positive semidefinite. The converse holds trivially: if A can be written as LL* for some invertible L, lower triangular or otherwise, then A is Hermitian and positive definite. LDL decomposition[edit source] A closely related variant of the classical Cholesky decomposition is the LDL decomposition, A =

#linear-algebra #matrix-decomposition

If the matrix **A** is Hermitian and positive semi-definite, then it still has a decomposition of the form **A** = **LL*** if the diagonal entries of **L** are allowed to be zero.

status | not read | reprioritisations | ||
---|---|---|---|---|

last reprioritisation on | reading queue position [%] | |||

started reading on | finished reading on |

eal and positive diagonal entries, and L* denotes the conjugate transpose of L. Every Hermitian positive-definite matrix (and thus also every real-valued symmetric positive-definite matrix) has a unique Cholesky decomposition. [2] <span>If the matrix A is Hermitian and positive semi-definite, then it still has a decomposition of the form A = LL* if the diagonal entries of L are allowed to be zero. [3] When A has real entries, L has real entries as well, and the factorization may be written A = LL T . [4] The Cholesky decomposition is unique when A is pos

s 7 Generalization 8 Implementations in programming languages 9 See also 10 Notes 11 References 12 External links 12.1 History of science 12.2 Information 12.3 Computer code 12.4 Use of the matrix in simulation 12.5 Online calculators <span>Statement[edit source] The Cholesky decomposition of a Hermitian positive-definite matrix A is a decomposition of the form A = L L ∗ , {\displaystyle \mathbf {A} =\mathbf {LL} ^{*},} where L is a lower triangular matrix with real and positive diagonal entries, and L* denotes the conjugate transpose of L. Every Hermitian positive-definite matrix (and thus also every real-valued symmetric positive-definite matrix) has a unique Cholesky decomposition. [2] If the matrix A is Hermitian and positive semi-definite, then it still has a decomposition of the form A = LL* if the diagonal entries of L are allowed to be zero. [3] When A has real entries, L has real entries as well, and the factorization may be written A = LL T . [4] The Cholesky decomposition is unique when A is positive definite; there is only one lower triangular matrix L with strictly positive diagonal entries such that A = LL*. However, the decomposition need not be unique when A is positive semidefinite. The converse holds trivially: if A can be written as LL* for some invertible L, lower triangular or otherwise, then A is Hermitian and positive definite. LDL decomposition[edit source] A closely related variant of the classical Cholesky decomposition is the LDL decomposition, A =

Tags

#linear-algebra #matrix-decomposition

Question

If the matrix **A** is [...], then it still has a decomposition of the form **A** = **LL*** if the diagonal entries of **L** are allowed to be zero.

Answer

Hermitian and positive semi-definite

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

If the matrix A is Hermitian and positive semi-definite, then it still has a decomposition of the form A = LL* if the diagonal entries of L are allowed to be zero.

s 7 Generalization 8 Implementations in programming languages 9 See also 10 Notes 11 References 12 External links 12.1 History of science 12.2 Information 12.3 Computer code 12.4 Use of the matrix in simulation 12.5 Online calculators <span>Statement[edit source] The Cholesky decomposition of a Hermitian positive-definite matrix A is a decomposition of the form A = L L ∗ , {\displaystyle \mathbf {A} =\mathbf {LL} ^{*},} where L is a lower triangular matrix with real and positive diagonal entries, and L* denotes the conjugate transpose of L. Every Hermitian positive-definite matrix (and thus also every real-valued symmetric positive-definite matrix) has a unique Cholesky decomposition. [2] If the matrix A is Hermitian and positive semi-definite, then it still has a decomposition of the form A = LL* if the diagonal entries of L are allowed to be zero. [3] When A has real entries, L has real entries as well, and the factorization may be written A = LL T . [4] The Cholesky decomposition is unique when A is positive definite; there is only one lower triangular matrix L with strictly positive diagonal entries such that A = LL*. However, the decomposition need not be unique when A is positive semidefinite. The converse holds trivially: if A can be written as LL* for some invertible L, lower triangular or otherwise, then A is Hermitian and positive definite. LDL decomposition[edit source] A closely related variant of the classical Cholesky decomposition is the LDL decomposition, A =

Tags

#linear-algebra #matrix-decomposition

Question

If the matrix **A** is Hermitian and positive semi-definite, then it still has a decomposition of the form **A** = **LL*** if **[...].**

Answer

the diagonal entries of **L** are allowed to be zero

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

If the matrix A is Hermitian and positive semi-definite, then it still has a decomposition of the form A = LL* if the diagonal entries of L are allowed to be zero.

s 7 Generalization 8 Implementations in programming languages 9 See also 10 Notes 11 References 12 External links 12.1 History of science 12.2 Information 12.3 Computer code 12.4 Use of the matrix in simulation 12.5 Online calculators <span>Statement[edit source] The Cholesky decomposition of a Hermitian positive-definite matrix A is a decomposition of the form A = L L ∗ , {\displaystyle \mathbf {A} =\mathbf {LL} ^{*},} where L is a lower triangular matrix with real and positive diagonal entries, and L* denotes the conjugate transpose of L. Every Hermitian positive-definite matrix (and thus also every real-valued symmetric positive-definite matrix) has a unique Cholesky decomposition. [2] If the matrix A is Hermitian and positive semi-definite, then it still has a decomposition of the form A = LL* if the diagonal entries of L are allowed to be zero. [3] When A has real entries, L has real entries as well, and the factorization may be written A = LL T . [4] The Cholesky decomposition is unique when A is positive definite; there is only one lower triangular matrix L with strictly positive diagonal entries such that A = LL*. However, the decomposition need not be unique when A is positive semidefinite. The converse holds trivially: if A can be written as LL* for some invertible L, lower triangular or otherwise, then A is Hermitian and positive definite. LDL decomposition[edit source] A closely related variant of the classical Cholesky decomposition is the LDL decomposition, A =

** **

Tags

#forward-backward-algorithm #hmm

Question

In the first pass, the forward–backward algorithm computes [...]

Answer

.

*the distribution over hidden states given the observations up to the point.*

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

The forward-backward algorithm In the first pass, the forward–backward algorithm computes a set of forward probabilities which provide, for all , the probability of ending up in any particular state given the first observations in the sequence, i.e. . In the second pass, the algorithm computes a set of backward probabilities which provide the probability of observing the remaining observations given any starting point , i.e. . Thes

cific instance of this class. Contents [hide] 1 Overview 2 Forward probabilities 3 Backward probabilities 4 Example 5 Performance 6 Pseudocode 7 Python example 8 See also 9 References 10 External links Overview[edit source] <span>In the first pass, the forward–backward algorithm computes a set of forward probabilities which provide, for all k ∈ { 1 , … , t } {\displaystyle k\in \{1,\dots ,t\}} , the probability of ending up in any particular state given the first k {\displaystyle k} observations in the sequence, i.e. P ( X k | o 1 : k ) {\displaystyle P(X_{k}\ |\ o_{1:k})} . In the second pass, the algorithm computes a set of backward probabilities which provide the probability of observing the remaining observations given any starting point k {\displaystyle k} , i.e. P ( o k + 1 : t | X k ) {\displaystyle P(o_{k+1:t}\ |\ X_{k})} . These two sets of probability distributions can then be combined to obtain the distribution over states at any specific point in time given the entire observation sequence: P ( X k | o 1 : t ) = P ( X k | o 1 : k , o k + 1 : t ) ∝ P ( o k + 1 : t | X k ) P ( X k | o 1 : k ) {\displaystyle P(X_{k}\ |\ o_{1:t})=P(X_{k}\ |\ o_{1:k},o_{k+1:t})\propto P(o_{k+1:t}\ |\ X_{k})P(X_{k}|o_{1:k})} The last step follows from an application of the Bayes' rule and the conditional independence of o k + 1 : t {\displaystyle o_{k+1:t}} and o 1 : k {\displaystyle o_{1:k}} given X k {\displaystyle X_{k}} . As outlined above, the algorithm involves three steps: computing forward probabilities computing backward probabilities computing smoothed values. The forward and backward steps m

[unknown IMAGE 1756479753484]

Tags

#has-images #lagrange-multiplier #optimization

Question

In x is a D dimensional variable. then \( g(x)=0 \) represents a [...]

Answer

(D−1) dimensional surface

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

In optimization with equality contraint and a D dimensional variable x. The constraint equation g(x)=0 then represents a (D−1) dimensional surface in x-space

** **

Tags

#function-space

Question

A function between two topological spaces *X* and *Y* is continuous if for every open set *V* ⊆ *Y*, *[...]*.

Answer

the inverse image is an open subset of *X*

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

A function between two topological spaces X and Y is continuous if for every open set V ⊆ Y, the inverse image is an open subset of X.

intersections that generalize the properties of the open balls in metric spaces while still allowing to talk about the neighbourhoods of a given point. The elements of a topology are called open subsets of X (with respect to the topology). <span>A function f : X → Y {\displaystyle f\colon X\rightarrow Y} between two topological spaces X and Y is continuous if for every open set V ⊆ Y, the inverse image f − 1 ( V ) = { x ∈ X | f ( x ) ∈ V } {\displaystyle f^{-1}(V)=\{x\in X\;|\;f(x)\in V\}} is an open subset of X. That is, f is a function between the sets X and Y (not on the elements of the topology T X ), but the continuity of f depends on the topologies used on X and Y. This is equivalent to

** **

Tags

#topology

Question

Answer

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

In mathematics, topology (from the Greek τόπος, place, and λόγος, study) is concerned with the properties of space that are preserved under continuous deformations, such as stretching, crumpling and bending, but not tearing or gluing.

ogy (disambiguation). For a topology of a topos or category, see Lawvere–Tierney topology and Grothendieck topology. [imagelink] Möbius strips, which have only one surface and one edge, are a kind of object studied in topology. <span>In mathematics, topology (from the Greek τόπος, place, and λόγος, study) is concerned with the properties of space that are preserved under continuous deformations, such as stretching, crumpling and bending, but not tearing or gluing. This can be studied by considering a collection of subsets, called open sets, that satisfy certain properties, turning the given set into what is known as a topological space. Important

** **

Tags

#topology

Question

Answer

crumpling

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

In geometry and topology, crumpling is the process whereby a sheet of paper or other two-dimensional manifold undergoes disordered deformation to yield a three-dimensional structure comprising a random network of ridges a

ikipedia Crumpling From Wikipedia, the free encyclopedia Jump to: navigation, search "Crumpled" redirects here. For the deformation feature, see Crumple zone. <span>In geometry and topology, crumpling is the process whereby a sheet of paper or other two-dimensional manifold undergoes disordered deformation to yield a three-dimensional structure comprising a random network of ridges and facets with variable density. The geometry of crumpled structures is the subject of some interest the mathematical community within the discipline of topology. [1] Crumpled paper balls have been studied and found t

** **

Tags

#hilbert-space

Question

Hilbert spaces arise naturally and frequently in mathematics and physics, typically as [...spaces...]

Answer

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

Hilbert spaces arise naturally and frequently in mathematics and physics, typically as infinite-dimensional function spaces.

n abstract vector space possessing the structure of an inner product that allows length and angle to be measured. Furthermore, Hilbert spaces are complete: there are enough limits in the space to allow the techniques of calculus to be used. <span>Hilbert spaces arise naturally and frequently in mathematics and physics, typically as infinite-dimensional function spaces. The earliest Hilbert spaces were studied from this point of view in the first decade of the 20th century by David Hilbert, Erhard Schmidt, and Frigyes Riesz. They are indispensable tool

** **

#inner-product-space

The Cauchy–Schwarz inequality states that for all vectors and of an inner product space it is true that

status | not read | reprioritisations | ||
---|---|---|---|---|

last reprioritisation on | reading queue position [%] | |||

started reading on | finished reading on |

al space) 3.2 R n (n-dimensional Euclidean space) 3.3 L 2 4 Applications 4.1 Analysis 4.2 Geometry 4.3 Probability theory 5 Generalizations 6 See also 7 Notes 8 References 9 External links Statement of the inequality[edit source] <span>The Cauchy–Schwarz inequality states that for all vectors u {\displaystyle u} and v {\displaystyle v} of an inner product space it is true that | ⟨ u , v ⟩ | 2 ≤ ⟨ u , u ⟩ ⋅ ⟨ v , v ⟩ , {\displaystyle |\langle \mathbf {u} ,\mathbf {v} \rangle |^{2}\leq \langle \mathbf {u} ,\mathbf {u} \rangle \cdot \langle \mathbf {v} ,\mathbf {v} \rangle ,} where ⟨ ⋅ , ⋅ ⟩ {\displaystyle \langle \cdot ,\cdot \rangle } is the inner product. Examples of inner products include the real and complex dot product, see the examples in inner product. Equivalently, by taking the square root of both sides, and referring to the norms

** **

Tags

#lebesgue-space

Question

Answer

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

In mathematics, the L p spaces are function spaces defined using a natural generalization of the p-norm for finite-dimensional vector spaces. They are sometimes called Lebesgue spaces,

Lp space - Wikipedia L p space From Wikipedia, the free encyclopedia Jump to: navigation, search In mathematics, the L p spaces are function spaces defined using a natural generalization of the p-norm for finite-dimensional vector spaces. They are sometimes called Lebesgue spaces, named after Henri Lebesgue (Dunford & Schwartz 1958, III.3), although according to the Bourbaki group (Bourbaki 1987) they were first introduced by Frigyes Riesz (Riesz 1910). L p

** **

Tags

#inner-product-space

Question

The [...] states that for all vectors and of an inner product space it is true that

Answer

Cauchy–Schwarz inequality

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

The Cauchy–Schwarz inequality states that for all vectors and of an inner product space it is true that

al space) 3.2 R n (n-dimensional Euclidean space) 3.3 L 2 4 Applications 4.1 Analysis 4.2 Geometry 4.3 Probability theory 5 Generalizations 6 See also 7 Notes 8 References 9 External links Statement of the inequality[edit source] <span>The Cauchy–Schwarz inequality states that for all vectors u {\displaystyle u} and v {\displaystyle v} of an inner product space it is true that | ⟨ u , v ⟩ | 2 ≤ ⟨ u , u ⟩ ⋅ ⟨ v , v ⟩ , {\displaystyle |\langle \mathbf {u} ,\mathbf {v} \rangle |^{2}\leq \langle \mathbf {u} ,\mathbf {u} \rangle \cdot \langle \mathbf {v} ,\mathbf {v} \rangle ,} where ⟨ ⋅ , ⋅ ⟩ {\displaystyle \langle \cdot ,\cdot \rangle } is the inner product. Examples of inner products include the real and complex dot product, see the examples in inner product. Equivalently, by taking the square root of both sides, and referring to the norms

** **

Tags

#inner-product-space

Question

The Cauchy–Schwarz inequality states that for all vectors and of an inner product space it is true that **[...]**

Answer

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

The Cauchy–Schwarz inequality states that for all vectors and of an inner product space it is true that

al space) 3.2 R n (n-dimensional Euclidean space) 3.3 L 2 4 Applications 4.1 Analysis 4.2 Geometry 4.3 Probability theory 5 Generalizations 6 See also 7 Notes 8 References 9 External links Statement of the inequality[edit source] <span>The Cauchy–Schwarz inequality states that for all vectors u {\displaystyle u} and v {\displaystyle v} of an inner product space it is true that | ⟨ u , v ⟩ | 2 ≤ ⟨ u , u ⟩ ⋅ ⟨ v , v ⟩ , {\displaystyle |\langle \mathbf {u} ,\mathbf {v} \rangle |^{2}\leq \langle \mathbf {u} ,\mathbf {u} \rangle \cdot \langle \mathbf {v} ,\mathbf {v} \rangle ,} where ⟨ ⋅ , ⋅ ⟩ {\displaystyle \langle \cdot ,\cdot \rangle } is the inner product. Examples of inner products include the real and complex dot product, see the examples in inner product. Equivalently, by taking the square root of both sides, and referring to the norms

** **

#inner-product-space

After defining an inner product on the set of random variables using the expectation of their product,

⟨ X , Y ⟩ := E ( X Y ) , {\displaystyle \langle X,Y\rangle :=\operatorname {E} (XY),}then the Cauchy–Schwarz inequality becomes

| E ( X Y ) | 2 ≤ E ( X 2 ) E ( Y 2 ) . {\displaystyle |\operatorname {E} (XY)|^{2}\leq \operatorname {E} (X^{2})\operatorname {E} (Y^{2}).}status | not read | reprioritisations | ||
---|---|---|---|---|

last reprioritisation on | reading queue position [%] | |||

started reading on | finished reading on |

( X ) . {\displaystyle \operatorname {Var} (Y)\geq {\frac {\operatorname {Cov} (Y,X)\operatorname {Cov} (Y,X)}{\operatorname {Var} (X)}}.} <span>After defining an inner product on the set of random variables using the expectation of their product, ⟨ X , Y ⟩ := E ( X Y ) , {\displaystyle \langle X,Y\rangle :=\operatorname {E} (XY),} then the Cauchy–Schwarz inequality becomes | E ( X Y ) | 2 ≤ E ( X 2 ) E ( Y 2 ) . {\displaystyle |\operatorname {E} (XY)|^{2}\leq \operatorname {E} (X^{2})\operatorname {E} (Y^{2}).} To prove the covariance inequality using the Cauchy–Schwarz inequality, let μ = E ( X ) {

** **

Tags

#calculus

Question

The infinitesimal approach fell out of favor in the 19th century because it was difficult to make [...]

Answer

the notion of an infinitesimal precise.

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

The infinitesimal approach fell out of favor in the 19th century because it was difficult to make the notion of an infinitesimal precise.

infinitesimals. The symbols dx and dy were taken to be infinitesimal, and the derivative d y / d x {\displaystyle dy/dx} was simply their ratio. <span>The infinitesimal approach fell out of favor in the 19th century because it was difficult to make the notion of an infinitesimal precise. However, the concept was revived in the 20th century with the introduction of non-standard analysis and smooth infinitesimal analysis, which provided solid foundations for the manipulation of infinitesimals. In the 19th century, infinitesimals were replaced by the epsilon, delta approach to limits. Limits describe the value of a function at a certain input in terms of its values at a near

** **

Tags

#english-literature

Question

Answer

1564

*Look, here comes the ***tall shrew**!

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

William Shakespeare ( / ˈ ʃ eɪ k s p ɪər / ; 26 April 1564 (baptised) – 23 April 1616) [a] was an English poet, playwright and actor, widely regarded as the greatest writer in the English language and the world's pre-eminent dramatist.

Era Elizabethan era Jacobean era Movement English Renaissance Spouse(s) Anne Hathaway ( m. 1582) Children Susanna Hall Hamnet Shakespeare Judith Quiney Parent(s) John Shakespeare Mary Arden Signature [imagelink] <span>William Shakespeare (/ˈʃeɪkspɪər/; 26 April 1564 (baptised) – 23 April 1616) [a] was an English poet, playwright and actor, widely regarded as the greatest writer in the English language and the world's pre-eminent dramatist. [2] [3] [4] He is often called England's national poet and the "Bard of Avon". [5] [b] His extant works, including collaborations, consist of approximately 39 plays, [c] 15

** **

Tags

#history

Question

The **Hundred Years' War** started in [...]

Answer

1337

*The war between the ***tame** and the **meek** (Christians).

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

The Hundred Years' War was a series of conflicts waged from 1337 to 1453 by the House of Plantagenet, rulers of the Kingdom of England, against the House of Valois, rulers of the Kingdom of France, over the succession to the French throne. </

Anglo-French wars 1202–04 1213–14 1215–17 1242–43 1294–1303 1337–1453 (1337–60, 1369–89, 1415–53) 1496-98 1512–14 1522–26 1542–46 1557–59 1627–29 1666–67 1689–97 1702–13 1744–48 1744–1763 1754–63 1778–83 1793–1802 1803–14 1815 <span>The Hundred Years' War was a series of conflicts waged from 1337 to 1453 by the House of Plantagenet, rulers of the Kingdom of England, against the House of Valois, rulers of the Kingdom of France, over the succession to the French throne. Each side drew many allies into the war. It was one of the most notable conflicts of the Middle Ages, in which five generations of kings from two rival dynasties fought for the throne o

** **

Tags

#history

Question

The **Hundred Years' War** ended in [...]

Answer

1453

*England would ***hate** losing its **heirloom**.

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

The Hundred Years' War was a series of conflicts waged from 1337 to 1453 by the House of Plantagenet, rulers of the Kingdom of England, against the House of Valois, rulers of the Kingdom of France, over the succession to the French throne. </b

Anglo-French wars 1202–04 1213–14 1215–17 1242–43 1294–1303 1337–1453 (1337–60, 1369–89, 1415–53) 1496-98 1512–14 1522–26 1542–46 1557–59 1627–29 1666–67 1689–97 1702–13 1744–48 1744–1763 1754–63 1778–83 1793–1802 1803–14 1815 <span>The Hundred Years' War was a series of conflicts waged from 1337 to 1453 by the House of Plantagenet, rulers of the Kingdom of England, against the House of Valois, rulers of the Kingdom of France, over the succession to the French throne. Each side drew many allies into the war. It was one of the most notable conflicts of the Middle Ages, in which five generations of kings from two rival dynasties fought for the throne o

** **

Tags

#germany

Question

The **Weimar Republic** began in [...].

Answer

1919

*I'd say the government is ***tip-top**!

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

The Weimar Republic (German: Weimarer Republik [ˈvaɪmaʁɐ ʁepuˈbliːk] ( [imagelink] listen ) ) is an unofficial, historical designation for the German state as it existed between 1919 and 1933.

** **

Tags

#ancient-history #history #roman-empire #rome #wiki

Question

the Roman Senate formally granted Octavian overarching power and the new title *Augustus* in [...]

Answer

27 BC

*Octavian had the Senate at its ***neck**.

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

Octavian's power was then unassailable and in 27 BC the Roman Senate formally granted him overarching power and the new title Augustus, effectively marking the end of the Roman Republic.

perpetual dictator and then assassinated in 44 BC. Civil wars and executions continued, culminating in the victory of Octavian, Caesar's adopted son, over Mark Antony and Cleopatra at the Battle of Actium in 31 BC and the annexation of Egypt. <span>Octavian's power was then unassailable and in 27 BC the Roman Senate formally granted him overarching power and the new title Augustus, effectively marking the end of the Roman Republic. The imperial period of Rome lasted approximately 1,500 years compared to the 500 years of the Republican era. The first two centuries of the empire's existence were a period of unprec

** **

A node is created when its name first appears in the file.

status | not read | reprioritisations | ||
---|---|---|---|---|

last reprioritisation on | reading queue position [%] | |||

started reading on | finished reading on |

** **

Question

A node is created when [...].

Answer

its name first appears in the file

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

A node is created when its name first appears in the file.

** **

An edge is created when nodes are joined by the edge operator ->.

status | not read | reprioritisations | ||
---|---|---|---|---|

last reprioritisation on | reading queue position [%] | |||

started reading on | finished reading on |

** **

Question

An edge is created when [...].

Answer

nodes are joined by the edge operator ->

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

An edge is created when nodes are joined by the edge operator ->.

** **

Attributes are name-value pairs of character strings.

status | not read | reprioritisations | ||
---|---|---|---|---|

last reprioritisation on | reading queue position [%] | |||

started reading on | finished reading on |

** **

Question

Attributes are [...].

Answer

name-value pairs of character strings

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

Attributes are name-value pairs of character strings.

** **

status | not read | reprioritisations | ||
---|---|---|---|---|

last reprioritisation on | reading queue position [%] | |||

started reading on | finished reading on |

** **

Question

When drawn, a node’s actual size is the greater of the requested size and the area needed for its text label, unless [...].

Answer

fixedsize=true, in which case the width and height values are enforced

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

When drawn, a node’s actual size is the greater of the requested size and the area needed for its text label, unless fixedsize=true, in which case the width and height values are enforced.

** **

Question

When drawn, a node’s actual size is the greater of [...], unless fixedsize=true, in which case the width and height values are enforced.

Answer

the requested size and the area needed for its text label

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

When drawn, a node’s actual size is the greater of the requested size and the area needed for its text label, unless fixedsize=true, in which case the width and height values are enforced.

** **

status | not read | reprioritisations | ||
---|---|---|---|---|

last reprioritisation on | reading queue position [%] | |||

started reading on | finished reading on |

** **

Question

Node shapes, except custom node shapes, fall into two broad categories: [...] and record-based.

Answer

polygon-based

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

Node shapes, except custom node shapes, fall into two broad categories: polygon-based and record-based.

** **

Question

Node shapes, except custom node shapes, fall into two broad categories: polygon-based and [...].

Answer

record-based

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

Node shapes, except custom node shapes, fall into two broad categories: polygon-based and record-based.

** **

Tags

#function-space

Question

for a function and set *V* ⊆ *Y*, the inverse image of Y is defined as **[...]**

Answer

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

A function between two topological spaces X and Y is continuous if for every open set V ⊆ Y, the inverse image is an open subset of X.

intersections that generalize the properties of the open balls in metric spaces while still allowing to talk about the neighbourhoods of a given point. The elements of a topology are called open subsets of X (with respect to the topology). <span>A function f : X → Y {\displaystyle f\colon X\rightarrow Y} between two topological spaces X and Y is continuous if for every open set V ⊆ Y, the inverse image f − 1 ( V ) = { x ∈ X | f ( x ) ∈ V } {\displaystyle f^{-1}(V)=\{x\in X\;|\;f(x)\in V\}} is an open subset of X. That is, f is a function between the sets X and Y (not on the elements of the topology T X ), but the continuity of f depends on the topologies used on X and Y. This is equivalent to

** **

Tags

#linear-state-space-models

Question

The theory of [...] for linear state space systems is elegant and simple

Answer

prediction

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

The theory of prediction for linear state space systems is elegant and simple

t]=Gμt The variance-covariance matrix of ytyt is easily shown to be (19)¶ Var[yt]=Var[Gxt+Hvt]=GΣtG′+HH′Var[yt]=Var[Gxt+Hvt]=GΣtG′+HH′ The distribution of ytyt is therefore yt∼N(Gμt,GΣtG′+HH′)yt∼N(Gμt,GΣtG′+HH′) Prediction¶ <span>The theory of prediction for linear state space systems is elegant and simple Forecasting Formulas – Conditional Means¶ The natural way to predict variables is to use conditional distributions For example, the optimal forecast of xt+1xt+1 given informatio